Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fast, low-power, all-optical switch

Switching light with light: only 140 photons are needed

An optical switch developed at the Joint Quantum Institute (JQI) spurs the prospective integration of photonics and electronics. What, isn't electronics good enough?

Well, nothing travels faster than light, and in the effort to speed up the processing and transmission of information, the combined use of light parcels (photons) along with electricity parcels (electrons) is desirable for developing a workable opto-electronic protocol.

The JQI (*) switch can steer a beam of light from one direction to another in only 120 picoseconds (120 trillionths of a second), requiring very little power, only about 90 attojoules (90 x 10-18 joules). At the wavelength used, in the near infrared (921 nm), this amounts to about 140 photons. These new results are being published in an upcoming issue of the journal Physical Review Letters (**).

The centerpiece of most electronic gear is the transistor, a solid-state component in which a gate signal is applied to a nearby tiny conducting pathway, thus switching on and off the passage of an information signal. The analogous process in photonics would be a solid-state component which acts as a gate, enabling or disabling the passage of light through a nearby waveguide, or as a router, for switching beams in different directions.

In the JQI experiment, prepared and conducted at the University of Maryland and at the National Institute for Standards and Technology (NIST) by Edo Waks and his colleagues, an all-optical switch has been created using a quantum dot (the equivalent of a gate) placed inside a resonant cavity. The dot, consisting of a nm-sized sandwich of the elements indium and arsenic, is so tiny that electrons moving inside can emit light at only discrete wavelengths, as if the dot were an atom. The quantum dot sits inside a photonic crystal, a material that has been bored with many tiny holes. The holes preclude the passage of light through the crystal except for a narrow wavelength range.

Actually, the dot sits inside a small hole-free arcade which acts like a resonant cavity. When light travels down the nearby waveguide some of it makes its way into the cavity, where it interacts with the quantum dot. And it is this interaction which can transform the waveguide's transmission properties. Although 140 photons are needed in the waveguide to produce switching action, only about 6 photons actually are needed to bring about modulation of the QD, thus throwing the switch.

Previous optical switches have been able to work only by using bulky nonlinear-crystals and high input power. The JQI switch, by contrast, achieves high-nonlinear interactions using a single quantum dot and very low power input. Switching required only 90 aJ of power, some five times less than the best previous reported device made at labs in Japan (***), which itself used 100 times less power than other all-optical switches. The Japanese switch, however, has the advantage of operating at room temperature, while the JQI switch requires a temperature of around 40 K.

Continuing our analogy with electronics: light traveling down the waveguide (the equivalent of the conducting pathway in a transistor) in the form of an information-carrying (probe) beam can be switched from one direction to another using the presence of a second pulse, a control (pump) beam. To steer the probe beam out the side of the device, the slightly detuned pump beam needs to arrive simultaneously with the probe beam, which is on resonance with the dot. The dot lies just off the center track of the waveguide, inside the cavity. The temperature of the quantum dot is tuned to be resonant with the cavity, resulting in strong coupling. If the pump beam does not arrive at the same time as the probe, the probe beam will exit in another direction

So, is this quantum-dot switch an "optical transistor"? Not quite, says JQI scientist Ranojoy Bose. "Our waveguide-dot setup can't yet be used to modulate a beam of light using only a weak control pulse of light---what we would call a low-photon-number pulse.

But Bose says he expects an improvement (reduction) in the number of photons needed to switch the resonant cavity on and off. In the meantime, the JQI switch represents a great start toward creating a usable ultrafast, low-energy on-chip signal router. "Our paper shows that switching can be achieved physically by using only 6 photons of energy, which is completely unprecedented. This is the achievement of fundamental physical milestones—sub-100-aJ switching and switching near the single photon level," Bose says.

(*)The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

(**) "Low photon number optical switching with a single quantum dot coupled to a photonic crystal cavity," Deepak Sridharan, Ranojoy Bose, Hyochul Kim, Glenn S. Solomon, and Edo Waks. Physical Review Letters, in press.

(***) Nozaki et al., Nature Photonics, 2 May 2010.

Ranojoy Bose,, 301-405-0030

A copy of the PRL paper can be obtained from Phillip F. Schewe,, 301-405-0989.

Phillip F. Schewe | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>