Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fast, furious, refined: Smaller black holes can eat plenty

Gemini observations support an unexpected discovery in the galaxy Messier 101.

A relatively small black hole (20-30 times the mass of our Sun) can sustain a hugely voracious appetite while consuming material in an efficient and tidy manner – something previously thought impossible.

Figure 1. Artist’s visualization of the environment around M101 ULX-1, showing a stellar-mass black hole (foreground) with accretion disk. Gas from the Wolf-Rayet star (background) feeds the black hole’s voracious appetite. Gemini Observatory/AURA artwork by Lynette Cook.

Figure 2. ULX-1 is located near a spiral arm of M101. The image for M101 is composed from X-ray (Chandra X-ray Observatory; Purple), Infrared (Spitzer Satellite; Red), Optical (Hubble Space Telescope; Yellow) and Ultraviolet (GALEX satellite; Blue).Credit: Chandra X-ray Observatory, Spitzer Satellite, Hubble Space Telescope, and GALEX Satellite.

The research also affects the long quest for elusive intermediate-mass black holes. The findings are published in the November 28, 2013, issue of the journal Nature.

The complete Nature paper can be accessed at:
Observations of a black hole powering an energetic X-ray source in a galaxy some 22 million light-years away could change our thinking about how some black holes consume matter. The findings indicate that this particular black hole, thought to be the engine behind the X-ray source’s high-energy light output, is unexpectedly lightweight, and, despite the generous amount of dust and gas being fed to it by a massive stellar companion, it swallows this material in a surprisingly orderly fashion.

“It has elegant manners,” says research team member Stephen Justham, of the National Astronomical Observatories of China, Chinese Academy of Sciences. Such lightweights, he explains, must devour matter at close to their theoretical limits of consumption to sustain the kind of energy output observed. "We thought that when small black holes were pushed to these limits, they would not be able to maintain such refined ways of consuming matter," Justham explains. "We expected them to display more complicated behavior when eating so quickly. Apparently we were wrong."

A Surprising Twist

X-ray sources give off high- and low-energy X-rays, which astronomers call hard and soft X-rays, respectively. In what might seem like a contradiction, larger black holes tend to produce more soft X-rays, while smaller black holes tend to produce relatively more hard X-rays. This source, called M101 ULX-1, is dominated by soft X-rays, so researchers expected to find a larger black hole as its energy source.

In a surprising twist, however, the new observations made at the Gemini Observatory, and published in the November 28th issue of the journal Nature, indicate that M101 ULX-1’s black hole is on the small side, and astrophysicists don’t understand why.

In theoretical models of how matter falls into black holes and radiates energy, the soft X-rays come primarily from the accretion disk (see illustration), while hard X-rays are typically generated by a high-energy “corona” around the disk. The models show that the corona’s emission strength should increase as the rate of accretion gets closer to the theoretical limit of consumption. Interactions between the disk and corona are also expected to become more complex.

Based on the size of the black hole found in this work, the region around M101-ULX-1 should, theoretically, be dominated by hard X-rays and appear structurally more complicated. However, that isn’t the case.

“Theories have been suggested which allow such low-mass black holes to eat this quickly and shine this brightly in X-rays. But those mechanisms leave signatures in the emitted X-ray spectrum, which this system does not display,” says lead author Jifeng Liu, of the National Astronomical Observatories of China, Chinese Academy of Sciences. “Somehow this black hole, with a mass only 20-30 times the mass of our Sun, is able to eat at a rate near to its theoretical maximum while remaining relatively placid. It’s amazing. Theory now needs to somehow explain what’s going on.”

An Intermediate-mass Black Hole Dilemma

The discovery also delivers a blow to astronomers hoping to find conclusive evidence for an “intermediate-mass” black hole in M101 ULX-1. Such black holes would have masses roughly between 100 and 1000 times the mass of the Sun, placing them between normal stellar-mass black holes and the monstrous supermassive black holes that reside in the centers of galaxies. So far these objects have been frustratingly elusive, with potential candidates but no broadly-accepted detection. Ultra-luminous X-ray sources (ULXs) have been one of the main proposed hiding places for intermediate-mass black holes, and M101 ULX-1 was one of the most promising-looking contenders.

“Astronomers hoping to study these objects will now have to focus on other locations for which indirect evidence of this class of black holes has been suggested, either in the even brighter ‘hyper-luminous’ X-ray sources or inside some dense clusters of stars,” explains research team member Joel Bregman of the University of Michigan.

“Many scientists thought it was just a matter of time until we had evidence for an intermediate-mass black hole in M101 ULX-1,” says Liu. But the new Gemini findings both take away some of that hope to solve an old puzzle and adds the fresh mystery of how this stellar-mass black hole can consume matter so calmly.

To determine the mass of the black hole, the researchers used the Gemini Multi-Object Spectrograph at the Gemini North telescope on Mauna Kea, Hawai‘i to measure the motion of the companion. This star, which feeds matter to the black hole, is of the Wolf-Rayet variety. Such stars emit strong stellar winds, from which the black hole can then draw in material. This study also revealed that the black hole in M101 ULX-1 can capture more material from that stellar wind than astronomers had anticipated.

M101 ULX-1 is ultra-luminous, shining a million times more brightly than the Sun in both X-rays (from the black hole accretion disk) and in the ultraviolet (from the companion star). Co-author Paul Crowther from the University of Sheffield in the United Kingdom adds, "Although this isn't the first Wolf-Rayet black hole binary ever discovered, at some 22 million light-years away, it does set a new distance record for such a system. The Wolf-Rayet star will have died in a small fraction of the time it has taken for light to reach us, so this system is now likely a double black hole binary."

“Studying objects like M101 ULX-1 in distant galaxies gives us a vastly larger sampling of the diversity of objects in our universe,” says Bregman. “It’s absolutely amazing that we have the technology to observe a star orbiting a black hole in another galaxy this far away.”


Gemini's mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai'i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country's contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Media Contacts:

Peter Michaud
Gemini Observatory, Hilo, HI
Email: pmichaud"at"
Cell: (808) 936-6643
Desk: (808) 974-2510
Science Contacts:
Ji-Feng Liu
Chinese Academy of Sciences, Beijing, China
Email: jfliu"at"
Desk: +86 010 6488 8713
Stephen Justham
Chinese Academy of Sciences, Beijing, China
Email: sjustham"at"
Cell: +86 150 1100 3278
Paul Crowther
University of Sheffield, Sheffield, UK
Email: Paul.crowther"at"
Cell: +44 (0) 7946 638474
Desk: +44 (0)114 222 4291
Joel Bregman
University of Michigan
Email: jbregman"at"
Cell: 734-476-9338
Desk: 734-764-3441

Peter Michaud | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>