Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fantastic phonons: Blocking sound, channeling heat with 'unprecedented precision'

14.11.2013
Imagine living on a bustling city block, but free from the noise of car horns and people on the street. The emerging field of phononics could one day make this a reality.

The phonon, like the photon or electron, is a physical particle that travels like waves, representing mechanical vibration. Phonons transmit everyday sound and heat. Recent progress in phononics has led to the development of new ideas and devices that are using phononic properties to control sound and heat, according to a new review in Nature.


Martin Maldovan, of the Georgia Institute of Technology, has published a review article on phononics in Nature.

Credit: Credit: Rob Felt.

One application that has scientists buzzing is the possibility of controlling sound waves by designing and fabricating cloaking shells to guide acoustic waves around a certain object – an entire building, perhaps – so that whatever is inside the shell is invisible to the sound waves.

The future possibilities for phonons might also solve the biggest challenges in energy consumption and buildings today. Understanding and controlling the phononic properties of materials could lead to novel technologies to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection, all by developing new materials to manipulate sound and heat.

These ideas are all possible in theory, but to make them a reality, phononics will have to inspire the same level of scientific innovation as electronics, and today that's not the case.

"People know about electrons because of computers, and electromagnetic waves because of cell phones, but not so much about phonons," said Martin Maldovan, a research scientist in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology.

Maldovan's review article appeared online Nov. 13 in the journal Nature. In the article he blends eight different subjects in the field of phononics, describing advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics and thermocrystals.

These technologies "herald the next technological revolution in phononics," he said. All of these areas share a common theme: manipulating mechanical vibrations, but at different frequences.

The hottest fields in phononics, Maldovan said, is the development of acoustic and thermal metamaterials. These materials are capable of cloaking sound waves and thermal flows. The phononics approach to cloaking is based on electromagnetic cloaking materials that are already in use for light.

Maldovan, formerly a research scientist at the Massachusetts Institute of Technology, also conducts phononics research of his own. This past summer, Maldovan published an article in the journal Physical Review Letters, describing an invention for controlling the conduction of heat through solid objects.

Known as thermocrystals, this new area of phononics research seeks to manage heat waves in a similar manner as sound and light waves, by channeling the flow of heat at certain frequencies. The technology could lead to devices that convert heat into energy, or the thermal equivalent of diodes, which could help data centers solve the problem of massive heat generated by their servers.

"The field of Phononics is relatively new, and when you have something new you don't know what you will find," Maldovan said. "You're always thinking 'what can I do with that?'"

CITATION: M Maldovan. "Sound and heat revolutions in phononics," (Nature, 2013). DOI:10.1038/nature12608

Brett Israel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>