Famous “sandpile model” shown to move like a traveling sand dune

Illustration of the Abelian sandpile Moritz Lang

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized criticality, which appears in a plethora of real-life situations such as the coordinated firing of brain cells, the spread of forest fires, the distribution of earth quake magnitudes and even in the coordinated behavior of ant colonies.

Even though the sandpile model serves as the archetypical model to study self-organized criticality, questions about its characteristics are still open and remain an active field of research. Moritz Lang and Mikhail Shkonikov from the Institute of Science and Technology Austria (IST Austria) have now discovered a new property of this mathematical model: by adding sand grains in a specific manner to the sandpile, they induce dynamics reminiscent of the emergence, movement, collision and disappearance of sand dunes in the Gobi or the Namib desert.

Different to real-world sand dunes, however, the dunes in their work—which is published in the current issue of PNAS—are composed of self-similar fractal patterns, somewhat similar to the famous Mandelbrot set.

The rules of the “sandpile experiment” are fairly simple: The model essentially consist of a grid of quadratic fields, similar to a checkerboard, onto which sand grains are dropped randomly. Fields that end up with less than four grains of sand remain stable, but when more grains accumulate on a field, the field becomes unstable and “topples”.

In such a “toppling”, four grains of sand are passed on to the four neighboring fields: one to the top, one to the bottom, one to the left, and one to the right. This might cause the neighboring fields to also become unstable and topple, which then in turn may cause the next neighbors to topple and so on – an “avalanche” emerges.

Similar to real-world avalanches in the Alps, these “sandpile avalanches” have no characteristic size, and it is extremely challenging to predict if the next sand grain will cause a huge avalanche, or nothing at all.

While, due to the simplicity of these rules, the sandpile model is regularly used as an easy example in elementary programming courses, it nevertheless displays various mathematical and physical phenomena still unexplained today—despite more than 30 years of extensive research.

Among the most fascinating of these phenomena is the appearance of fractal sandpile configurations. These fractal sandpiles are characterized by repetitive and self-similar patterns where the same shapes appear over and over again, but in smaller and smaller versions. The occurrence of these fractal patterns has yet evade any mathematical explanation.

While the researchers at IST Austria could also not solve this mathematical riddle, they rendered this phenomenon even more mysterious by showing that these fractal patterns can seemingly continuously transform into one another: They were able to produce movies in which the fractal patterns display dynamics which are, depending on the background of the observer, either reminiscent of the movement of real-world sand dunes, or of “psychedelic movies” characteristic for the 70’ies.

Not solving a mathematical question but only making it appear to be even more mysterious might at first sight not seem to be the ideal outcome. However, the two scientists – Moritz Lang who is a postdoc in the research group of Professor Calin Guet, and Mikhail Shkonikov, a postdoc in the group of Professor Tamas Hausel – believe that their “psychedelic movies” might be the key to a better understanding of the sandpile model, and maybe also of many other physical, biological or even economical problems.

“You could say that we have found universal coordinates for the sandpile,” say Mikhail Shkonikov, “essentially, we can give every sand dune in the desert a very specific identifier.” Moritz Lang, who is a theoretical biologist, adds: “the key to understand any physical or biological phenomenon is to understand its consequences.

The more consequences we know, the harder it becomes to develop a scientific hypothesis which is in agreement with all those consequences. In that sense, knowing all possible sand dunes and how they move represents a lot of constraints, and we hope that, in the end, this will remove sufficient hay from the stack such that we can find the needle.”

The two researchers see many applications of their theoretical work to real-world problems like the prediction of earthquake magnitudes, the functioning of the human brain, physics, or even economics: “In all these fields, we find haystacks which look similar, very similar. Maybe it turns out that all haystacks are the same, and that there is only one needle to find.”

Moritz Lang finished his PhD at ETH Zürich in spring 2015 with a thesis entitled “Modular identification and analysis of biomolecular networks”. He joined IST Austria in August 2015. Mikhail Shkonikov obtained his PhD from the University of Geneva and joined IST Austria in 2017.

Funding information:
The research was completed at IST Austria, and received funding from the ISTFELLOW program, a Marie Skłodowska-Curie COFUND grant co-funded by IST Austria and the European Union through the Horizon 2020 research and innovation programme. This program has since been succeeded by another COFUND grant, the ISTplus program, which is open for applications from qualified postdocs all over the world: https://ist.ac.at/research/postdoctoral-research/istplus/

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Moritz Lang
moritz.lang@ist.ac.at

Moritz Lang and Mikhail Shkolnikov: Harmonic dynamics of the Abelian sandpile, PNAS 2019, https://doi.org/10.1073/pnas.1812015116
https://www.pnas.org/content/early/2019/02/05/1812015116

https://langmo.github.io/interpile/videos.html Videos illustrating the study. The videos are under a creative commons license.

Media Contact

Dr. Elisabeth Guggenberger idw - Informationsdienst Wissenschaft

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors