Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faint 'satellite galaxy' discovered

19.01.2012
A faint “satellite galaxy” 10 billion light years from Earth is the lowest-mass object ever detected at such a distance, says University of California, Davis, physics professor Chris Fassnacht, who aided in the satellite’s discovery.
The find, described in a paper published online today (Jan. 18) in the journal Nature, could help astronomers find similar objects and confirm or reject theories about the structure of the cosmos.

Theory predicts that galaxies should be surrounded by halos of smaller, satellite blobs of mass, according to Fassnacht. Astronomers have detected such satellites around our own galaxy, the Milky Way, and nearby.

But they had not previously detected the predicted satellites of more distant galaxies.

Because most of the mass of galaxies is made up, not of stars, but of “dark matter,” which does not absorb or emit light, these distant objects may be very faint or even completely dark.

The team looked for faint or dark satellites of distant galaxies using a method called gravitational lensing. Using the Keck II telescope at the W.M. Keck Observatory on Mauna Kea, Hawaii, with “adaptive optics,” they found two galaxies aligned with each other, as viewed from Earth.

The nearer object’s gravitational field deflects the light from the more distant object as the light passes through or near the other object’s gravitational field, creating a distorted image as if passed through a lens. By analyzing these distorted images, the researchers could determine if there were any satellite galaxies clustered around the “lens” galaxy.

Adaptive optics make constant, tiny adjustments to the telescope mirror to compensate for the effects of the Earth’s atmosphere. As a result, the Keck telescopes can achieve higher resolution than the Hubble Space Telescope.

The technique can now be applied to many more galaxies, Fassnacht said. “As we collect more objects, we can do more precise tests of our simulations and make predictions about the structure of the universe,” he said.

First author Simona Vegetti, a postdoctoral researcher at the Massachusetts Institute of Technology, said: “Now we have one dark satellite, but suppose that we don’t find enough of them — then we will have to change the properties of dark matter.

“Or, we might find as many satellites as we see in the simulations, and that will tell us that dark matter has the properties we think it has.”

Fassnacht and Vegetti worked with Leon Koopmans of the University of Groningen, Netherlands; David Lagattuta, now at the Swinburne University of Technology, Australia; Matthew Auger, UC Santa Barbara; and John McKean of the Netherlands Foundation for Research in Astronomy. Lagattuta and Auger are former graduate students in Fassnacht’s lab, and McKean was a postdoctoral researcher at UC Davis.

The National Science Foundation funded the research.
About UC Davis

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 32,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget that exceeds $684 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Chris Fassnacht, Physics, (530) 554-2600, cdfassnacht@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>