Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faint 'satellite galaxy' discovered

19.01.2012
A faint “satellite galaxy” 10 billion light years from Earth is the lowest-mass object ever detected at such a distance, says University of California, Davis, physics professor Chris Fassnacht, who aided in the satellite’s discovery.
The find, described in a paper published online today (Jan. 18) in the journal Nature, could help astronomers find similar objects and confirm or reject theories about the structure of the cosmos.

Theory predicts that galaxies should be surrounded by halos of smaller, satellite blobs of mass, according to Fassnacht. Astronomers have detected such satellites around our own galaxy, the Milky Way, and nearby.

But they had not previously detected the predicted satellites of more distant galaxies.

Because most of the mass of galaxies is made up, not of stars, but of “dark matter,” which does not absorb or emit light, these distant objects may be very faint or even completely dark.

The team looked for faint or dark satellites of distant galaxies using a method called gravitational lensing. Using the Keck II telescope at the W.M. Keck Observatory on Mauna Kea, Hawaii, with “adaptive optics,” they found two galaxies aligned with each other, as viewed from Earth.

The nearer object’s gravitational field deflects the light from the more distant object as the light passes through or near the other object’s gravitational field, creating a distorted image as if passed through a lens. By analyzing these distorted images, the researchers could determine if there were any satellite galaxies clustered around the “lens” galaxy.

Adaptive optics make constant, tiny adjustments to the telescope mirror to compensate for the effects of the Earth’s atmosphere. As a result, the Keck telescopes can achieve higher resolution than the Hubble Space Telescope.

The technique can now be applied to many more galaxies, Fassnacht said. “As we collect more objects, we can do more precise tests of our simulations and make predictions about the structure of the universe,” he said.

First author Simona Vegetti, a postdoctoral researcher at the Massachusetts Institute of Technology, said: “Now we have one dark satellite, but suppose that we don’t find enough of them — then we will have to change the properties of dark matter.

“Or, we might find as many satellites as we see in the simulations, and that will tell us that dark matter has the properties we think it has.”

Fassnacht and Vegetti worked with Leon Koopmans of the University of Groningen, Netherlands; David Lagattuta, now at the Swinburne University of Technology, Australia; Matthew Auger, UC Santa Barbara; and John McKean of the Netherlands Foundation for Research in Astronomy. Lagattuta and Auger are former graduate students in Fassnacht’s lab, and McKean was a postdoctoral researcher at UC Davis.

The National Science Foundation funded the research.
About UC Davis

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 32,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget that exceeds $684 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Chris Fassnacht, Physics, (530) 554-2600, cdfassnacht@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>