Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Failed dwarf galaxy survives galactic collision thanks to full dark-matter jacket


Like a bullet wrapped in a full metal jacket, a high-velocity hydrogen cloud hurtling toward the Milky Way appears to be encased in a shell of dark matter, according to a new analysis of data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT). Astronomers believe that without this protective shell, the high-velocity cloud (HVC) known as the Smith Cloud would have disintegrated long ago when it first collided with the disk of our Galaxy.

If confirmed by further observations, a halo of dark matter could mean that the Smith Cloud is actually a failed dwarf galaxy, an object that has all the right stuff to form a true galaxy, just not enough to produce stars.

This is a false-color image of the Smith Cloud made with data from the Green Bank Telescope (GBT).


"The Smith Cloud is really one of a kind. It's fast, quite extensive, and close enough to study in detail," said Matthew Nichols with the Sauverny Observatory in Switzerland and principal author on a paper accepted for publication in the Monthly Notices of the Royal Astronomical Society. "It's also a bit of a mystery; an object like this simply shouldn't survive a trip through the Milky Way, but all the evidence points to the fact that it did."

Previous studies of the Smith Cloud revealed that it first passed through our Galaxy many millions of years ago. By reexamining and carefully modeling the cloud, astronomers now believe that the Smith Cloud contains and is actually wrapped in a substantial "halo" of dark matter -- the gravitationally significant yet invisible stuff that makes up roughly 80 percent of all the matter in the Universe.

"Based on the currently predicted orbit, we show that a dark matter free cloud would be unlikely to survive this disk crossing," observed Jay Lockman, an astronomer at the National Radio Astronomy Observatory in Green Bank, West Virginia, and one of the coauthors on the paper. "While a cloud with dark matter easily survives the passage and produces an object that looks like the Smith Cloud today."

The Milky Way is swarmed by hundreds of high-velocity clouds, which are made up primarily of hydrogen gas that is too rarefied to form stars in any detectable amount. The only way to observe these objects, therefore, is with exquisitely sensitive radio telescopes like the GBT, which can detect the faint emission of neutral hydrogen. If it were visible with the naked eye, the Smith Cloud would cover almost as much sky as the constellation Orion.

Most high-velocity clouds share a common origin with the Milky Way, either as the leftover building blocks of galaxy formation or as clumps of material launched by supernovas in the disk of the Galaxy. A rare few, however, are interlopers from farther off in space with their own distinct pedigree. A halo of dark matter would strengthen the case for the Smith Cloud being one of these rare exceptions.

Currently, the Smith Cloud is about 8,000 light-years away from the disk of our Galaxy. It is moving toward the Milky Way at more than 150 miles per second and is predicted to impact again in approximately 30 million years.

"If confirmed to have dark matter this would in effect be a failed galaxy," said Nichols. "Such a discovery would begin to show the lower limit of how small a galaxy could be." The researchers believe this could also improve our understanding of the Milky Way's earliest star formation.

Charles Blue | Eurek Alert!

Further reports about: Astronomy Cloud Galaxy Observatory clouds collision dark dwarf neutral sensitive telescopes

More articles from Physics and Astronomy:

nachricht Graphene microphone outperforms traditional nickel and offers ultrasonic reach
27.11.2015 | Institute of Physics

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>