Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fahrenheit -459: Neutron stars and string theory in a lab

10.12.2010
Using lasers to contain some ultra-chilled atoms, a team of scientists has measured the viscosity or stickiness of a gas often considered to be the sixth state of matter. The measurements verify that this gas can be used as a "scale model" of exotic matter, such as super-high temperature superconductors, the nuclear matter of neutron stars, and even the state of matter created microseconds after the Big Bang.

The results may also allow experimental tests of string theory in the future.

Duke physicist John Thomas made the viscosity measurements using an ultra-cold Fermi gas of lithium-6 atoms trapped in a millimeter-sized bowl made of laser light. When cooled and placed inside a magnetic field of the correct size, the atoms interact as strongly as the laws of quantum mechanics allow. This strongly interacting gas exhibits "remarkable properties," such as nearly frictionless fluid flow, Thomas said.

The team's report appears in the Dec. 10 issue of Science.

Under the ultra-cold conditions, the properties of the gas are determined by a universal ruler, or natural length scale, much like the scale on an architect's drawing. The ruler for the atomic gas is the average spacing between the atoms. According to quantum physics, this spacing determines all other natural scales, such as the scale for energy, temperature and viscosity, making the ultra-cold gas a scale model for other exotic matter. Thomas said that he and others have verified the gas as a universal scale model for properties such as temperature, but this is the first time they've tested the scaling of viscosity, which happens to be of particular interest to scientists right now.

Thomas first measured the viscosity of the gas at a few billionths of a degree Kelvin, or -459 degrees Fahrenheit. Turning off the trap that confines the gas, and then recapturing it caused the radius of the Fermi gas to vibrate. The oscillation, called a breathing mode, resembles the jiggling of a piece of jelly. The longer the vibrations lasted, the lower the viscosity. At slightly higher temperatures, millionths of a degree Kelvin, the researchers instead observed how fast the gas changed from a cigar shape to a pancake after being released from the trap. A slower change in shape had a higher viscosity.

These results are "extremely important to the field of condensed matter physics and to high temperature superconductivity in particular," said Kathy Levin, a theorist at the University of Chicago, who was not involved in the research. She said that the viscosity of the Fermi gas is similar to the conductivity of a superfluid, which flows with no resistance. This "perfect fluidity" is also observed in the condensed matter world, especially in materials used to make high temperature superconductors. The new data, especially at lower temperatures, "seem quite consistent" with predictions of how superconductors should flow, Levin said.

The Fermi gas as a scale model is also important for studying elements of the cosmos that scientists can't probe in a lab, said Duke physicist Berndt Mueller. Even a very small chunk of a neutron star, a dead star that hasn't become a black hole, would weigh billions of tons on Earth and be much too dense to study. The data showing the universal properties of the Fermi gas, however, let physicists calculate the scale from lithium-6 atomic spacing to the spacing between neutrons in these stars. The measurements made on the Fermi gas can then be used to determine the natural energy and other properties for these stars, which can be compared to theorists' predictions. Similar calculations can be made for the quark-gluon plasma, the state of matter created just microseconds after the Big Bang and being studied in particle accelerators such as the Large Hadron Collider in Geneva.

Thomas said the new results also give experimental insight into predictions made using string theory, the mathematical construct uniting the classical world of gravity with quantum physics. String theorists have provided a lower bound for the ratio of the viscosity or fluid flow to the entropy, or disorder, in a strongly-interacting system. The new experiments measured both properties in the Fermi gas and showed that the gas minimum is between four and five times the string theorists' lower bound.

"The measurements do not test string theory directly," Thomas said, noting a few caveats-- the lower bound is derived for high-energy systems, where Einstein's theory of relativity is essential, while the Fermi gas experiments study low-energy gases. If string theorists create new calculations specifically for a Fermi gas, scientists would be able to make precise experimental tests of the theory with equipment no larger than a desktop.

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>