Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication on patterned silicon carbide produces bandgap to advance graphene electronics

19.11.2012
Semiconducting graphene

By fabricating graphene structures atop nanometer-scale "steps" etched into silicon carbide, researchers have for the first time created a substantial electronic bandgap in the material suitable for room-temperature electronics.


This is a perspective atomic force microscope (AFM) view of graphitized trenches that are 18 nanometers deep.

Credit: Courtesy Georgia Tech

Use of nanoscale topography to control the properties of graphene could facilitate fabrication of transistors and other devices, potentially opening the door for developing all-carbon integrated circuits.

Researchers have measured a bandgap of approximately 0.5 electron-volts in 1.4-nanometer bent sections of graphene nanoribbons. The development could provide new direction to the field of graphene electronics, which has struggled with the challenge of creating bandgap necessary for operation of electronic devices.

"This is a new way of thinking about how to make high-speed graphene electronics," said Edward Conrad, a professor in the School of Physics at the Georgia Institute of Technology. "We can now look seriously at making fast transistors from graphene. And because our process is scalable, if we can make one transistor, we can potentially make millions of them."

The findings were scheduled to be reported November 18 in the journal Nature Physics. The research, done at the Georgia Institute of Technology in Atlanta and at SOLEIL, the French national synchrotron facility, has been supported by the National Science Foundation' Materials Research Science and Engineering Center (MRSEC) at Georgia Tech, the W.M. Keck Foundation and the Partner University Fund from the Embassy of France.

Researchers don't yet understand why graphene nanoribbons become semiconducting as they bend to enter tiny steps – about 20 nanometers deep – that are cut into the silicon carbide wafers. But the researchers believe that strain induced as the carbon lattice bends, along with the confinement of electrons, may be factors creating the bandgap. The nanoribbons are composed of two layers of graphene.

Production of the semiconducting graphene structures begins with the use of e-beams to cut trenches into silicon carbide wafers, which are normally polished to create a flat surface for the growth of epitaxial graphene. Using a high-temperature furnace, tens of thousands of graphene ribbons are then grown across the steps, using photolithography.

During the growth, the sharp edges of "trenches" cut into the silicon carbide become smoother as the material attempts to regain its flat surface. The growth time must therefore be carefully controlled to prevent the narrow silicon carbide features from melting too much.

The graphene fabrication also must be controlled along a specific direction so that the carbon atom lattice grows into the steps along the material's "armchair" direction. "It's like trying to bend a length of chain-link fence," Conrad explained. "It only wants to bend one way."

The new technique permits not only the creation of a bandgap in the material, but potentially also the fabrication of entire integrated circuits from graphene without the need for interfaces that introduce resistance. On either side of the semiconducting section of the graphene, the nanoribbons retain their metallic properties.

"We can make thousands of these trenches, and we can make them anywhere we want on the wafer," said Conrad. "This is more than just semiconducting graphene. The material at the bends is semiconducting, and it's attached to graphene continuously on both sides. It's basically a Shottky barrier junction."

By growing the graphene down one edge of the trench and then up the other side, the researchers could in theory produce two connected Shottky barriers – a fundamental component of semiconductor devices. Conrad and his colleagues are now working to fabricate transistors based on their discovery.

Confirmation of the bandgap came from angle-resolved photoemission spectroscopy measurements made at the Synchrotron CNRS in France. There, the researchers fired powerful photon beams into arrays of the graphene nanoribbons and measured the electrons emitted.

"You can measure the energy of the electrons that come out, and you can measure the direction from which they come out," said Conrad. "From that information, you can work backward to get information about the electronic structure of the nanoribbons."

Theorists had predicted that bending graphene would create a bandgap in the material. But the bandgap measured by the research team was larger than what had been predicted.

Beyond building transistors and other devices, in future work the researchers will attempt to learn more about what creates the bandgap – and how to control it. The property may be controlled by the angle of the bend in the graphene nanoribbon, which can be controlled by altering the depth of the step.

"If you try to lay a carpet over a small imperfection in the floor, the carpet will go over it and you may not even know the imperfection is there," Conrad explained. "But if you go over a step, you can tell. There are probably a range of heights in which we can affect the bend."

He predicts that the discovery will create new activity as other graphene researchers attempt to utilize the results.

"If you can demonstrate a fast device, a lot of people will be interested in this," Conrad said. "If this works on a large scale, it could launch a niche market for high-speed, high-powered electronic devices."

In addition to Conrad, the research team included J. Hicks, M.S. Nevius, F. Wang, K. Shepperd, J. Palmer, J. Kunc, W.A. De Heer and C. Berger, all from Georgia Tech; A. Tejeda from the Institut Jean Lamour, CNES – Univ. de Nancy and the Synchrotron SOLEIL; A. Taleb-Ibrahimi from the CNRS/Synchrotron SOLEIL, and F. Bertran and P. Le Fevre from Synchrotron SOLEIL.

This research was supported by the National Science Foundation (NSF) under Grants DMR-0820382 and DMR-1005880, the W.M. Keck Foundation, and the Partner University Fund from the Embassy of France. The content of the article is the responsibility of the authors and does not necessarily represent the views of the National Science Foundation.

CITATION: Hicks, J., A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene, Nature Physics (2012). http://dx.doi.org/10.1038/NPHYS2487.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Astronomers confirm faintest early-universe galaxy ever seen
24.05.2016 | University of California - Los Angeles

nachricht Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite
23.05.2016 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Astronomers confirm faintest early-universe galaxy ever seen

24.05.2016 | Physics and Astronomy

Scientists find sustainable solutions for oysters in the future by looking into the past

24.05.2016 | Earth Sciences

Laser-manufactured customized lenses

24.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>