Extremely rare triple quasar found

Quasars are extremely bright and powerful sources of energy that sit in the center of a galaxy, surrounding a black hole. In systems with multiple quasars, the bodies are held together by gravity and are believed to be the product of galaxies colliding.

It is very difficult to observe triplet quasar systems, because of observational limits that prevent researchers from differentiating multiple nearby bodies from one another at astronomical distances. Moreover, such phenomena are presumed to be very rare.

By combining multiple telescope observations and advanced modeling, the team–led by Emanuele Farina of the University of Insubria in Como Italy–was able to find the triplet quasar, called QQQ J1519+0627. The light from the quasars has traveled 9 billion light years to reach us, which means the light was emitted when the universe was only a third of its current age.

Advanced analysis confirmed that what the team found was indeed three distinct sources of quasar energy and that the phenomenon is extremely rare.

Two members of the triplet are closer to each other than the third. This means that the system could have been formed by interaction between the two adjacent quasars, but was probably not triggered by interaction with the more-distant third quasar. Furthermore, no evidence was seen of any ultra-luminous infrared galaxies, which is where quasars are commonly found. As a result, the team proposes that this triplet quasar system is part of some larger structure that is still undergoing formation.

“Honing our observational and modeling skills and finding this rare stellar phenomenon will help us understand how cosmic structures assemble in our universe and the basic processes by which massive galaxies form,” Fumagalli said.

“Further study will help us figure out exactly how these quasars came to be and how rare their formation is,” Farina added.

This research was based on observations collected at the La Silla Observatory with the New Technology Telescope of the European Southern Observatory and at the Calar Alto Observatory with the 3.5m telescope of the Centro Astronomico Hispano Aleman.

This work was supported by Societa Carlo Gavazzi S.pA., Thales Alenia space Italia S.p.A., Germany's National Research Centre for Aeronautics and Space, and NASA.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Michele Fumagalli EurekAlert!

More Information:

http://www.carnegiescience.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors