Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme x-ray pulses create unique image of intact virus

03.02.2011
They are entirely too small to be seen even with the most powerful microscope.

But now an international research team has managed to capture an image of an intact virus and a membrane structure from a photosynthetic bacterium with the aid of extremely intensive and ultra-short x-ray pulses from the world’s first free electron laser. This new advance in structural biology is being published today in two articles in the journal Nature.

The findings for the two studies pave the way for studies of biological structures at the molecular level, including viruses, individual cells, cell organelles, and living bacteria. The technology enhances the possibilities of imaging individual biological molecules that are too small to study even with the most powerful microscopes.

- Biologists have long dreamed of being able to capture the image of viruses, single-cell organisms, and bacteria without having to section, freeze, or mark them with metals, as is necessary in electron microscopy. Our studies show that it is really possible to create images with the aid of extremely intensive and ultra-short x-ray pulses that would otherwise destroy everything in their path, says Professor Janos Hajdu from the Division of Molecular Biophysics, Uppsala University.

Together with his colleague Henry Chapman, he has co-directed the international research team, which also includes Inger Andersson’s team from the Swedish University of Agricultural Sciences, SLU. The entire international group is currently at Stanford for new experiments with the advanced free electron laser.

X-ray diffraction has been an irreplaceable instrument in identifying biological structures, but this technology requires crystallized samples of sufficient size. Many particles are therefore packed in crystals. For single particles the x-ray dose needs to be increased so much that the particle is destroyed, especially if it comes from biological material. A number of years ago it was suggested that extremely short pulses from a so-called free electron laser would be able to create an image before the particle had time to be damaged. It is this method (read more about the technology below) that is now being tested on biological material.

In the first study, the method was tested on Mimivirus, the world’s largest known virus, discovered as recently as 1992. It is larger than some single-cell organisms and the only virus that can be infected by a virus of its own. Its size and special surface structure entails that it cannot be studied using conventional imaging methods such as electron microscopy or x-ray crystallography.

In the other study the team shows that x-ray pulses can also be used to study the structure of vitally important membrane proteins – in this case a protein complex that captures sunlight and converts it to energy in photosynthesizing organisms, here a photosynthetic bacterium. Membrane proteins are essential to life processes, not only as energy converters but also as the cell’s transporters and receptors for drugs – but they are incredibly hard to study using conventional methods. The new technology means that huge “blank patches” in structural biology will now be accessible for study at the level of the atom for the first time.

About the technology: The world’s first free electron laser in the hard x-ray area – the Linac Coherent Light Source (LCLS), at Stanford Linear Accelerator Center (SLAC) – has a light intensity that surpasses conventional synchrotrons by a billion times, so intensive that it can cut through steel. A single pulse that is focused on a micrometer-size point contains as much energy as all sunlight hitting the earth focused to a square millimeter. The light pulses are extremely short (50-70 femtoseconds, 1 fs = 10-15 sec), which means that can replicate the image of a micrometer-size virus, before it is heated up to 100,000 degree centigrade and is destroyed. LCLS came into use in October 2009, and the studies in question were performed in December that year.

References:

Hajdu et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, doi:10.1038/nature09748

Chapman et al. Femtosecond X-ray protein nanocrystallography. Nature, doi:10.1038/nature09750

For more information, please contact Janos Hajdu (currently at Stanford), mobile: +46 (0)70-425 01 94, janos.hajdu@icm.uu.se or Inger Andersson (also currently at Stanford), mobile: +46 (0)70-520 81 01, inger.andersson@molbio.slu.se

Uppsala University -- quality, knowledge, and creativity since 1477
World-class research and outstanding education of global benefit to society, business, and culture.

Uppsala University is one of northern Europe's highest ranked academic institutions.

Anneli Waara | Uppsala universitet
Further information:
http://www.uu.se

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>