Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme Volcanism: Image Captures one of the Brightest Volcanoes Ever Seen in the Solar System

05.08.2014

During the middle of 2013, Jupiter’s moon Io came alive with volcanism. Now, an image from the Gemini Observatory captures what is one of the brightest volcanoes ever seen in our solar system.

The image, obtained on August 29, reveals the magnitude of the eruption that was the “grand finale” in a series of eruptions on the distant moon. Io’s volcanism is caused by the tidal push-and-pull of massive Jupiter, which heats the satellite’s interior – making it our Solar System’s most volcanically active known body.


Figure 1. Image of Io taken in the near-infrared with adaptive optics at the Gemini North telescope on August 29. In addition to the extremely bright eruption on the upper right limb of the satellite, the lava lake Loki is visible in the middle of Io’s disk, as well as the fading eruption that was detected earlier in the month by de Pater on the southern (bottom) limb. Io is about one arcsecond across. Image credit: Katherine de Kleer/UC Berkeley/Gemini Observatory/AURA


Figure 2. Images of Io taken in the near-infrared with adaptive optics at the Gemini North telescope tracking the evolution of the eruption as it decreased in intensity over 12 days. Due to Io’s rapid rotation, a different area of the surface is viewed on each night; the outburst is visible with diminishing brightness on August 29 & 30 and September 1, 3, & 10. Image credit: Katherine de Kleer/UC Berkeley/Gemini Observatory/AURA

According to University of California Berkeley (UCB) astronomer Katherine de Kleer, the Gemini observations, “… represent the best day-by-day coverage of such an eruption – thanks to Gemini’s rapid and flexible scheduling capabilities.” De Kleer, who led one of a pair of two papers published today in the journal Icarus, adds that the Gemini data allowed the team to monitor the evolution of the extreme volcanic activity over nearly the first two weeks of the eruption – which provided a critical new perspective on the outburst events.

De Kleer’s paper examines the powerful late-August eruption in detail, concluding that the energy emitted was about 20 Terawatts and expelled many cubic kilometers of lava. “At the time we observed the event, an area of newly-exposed lava on the order of tens of square kilometers was visible” says de Kleer. “We believe that it erupted in fountains from long fissures on Io’s surface, which were over ten-thousand-times more powerful than the lava fountains during the 2010 eruption of Eyjafjallajokull, Iceland, for example.”

The original detection of the volcano was made simultaneously at Gemini and NASA’s Infrared Telescope Facility (IRTF), and was the first of a series of observations monitoring Io at both facilities over the following year. These particular observations were timed to follow up on a different outburst eruption that was detected earlier in the month by Imke de Pater, also of UCB.

This record of the spate of activity began when de Pater first spotted a hotspot using the W.M. Keck Observatory in mid-August (see UCB press release, also released today at: http://newscenter.berkeley.edu/2014/08/04/a-hellacious-two-weeks-on-jupiters-moon-io/), which the team followed with further observations from Mauna Kea. The late August Gemini observations of the most extreme outburst (see Figure 1) used adaptive optics on the Gemini North telescope to produce this super-sharp near-infrared image. Gemini also recorded a series of images chronicling the massive eruption’s evolution as it faded over the next 12 days (see Figure 2).

In addition to de Kleer and de Pater, the lead authors on the two publications discussing these events, the research team included Máté Ádámkovics of UCB, Ashley Davies from the Jet Propulsion Laboratory and David Ciardi of Caltech's NASA Exoplanet Science Institute. The work is funded by the National Science Foundation and NASA’s Outer Planets Research and Planetary Geology and Geophysics Program.

The papers are available in the journal Icarus (subscription required).

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai'i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country's contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Media Contacts:

Peter Michaud
Public Information and Outreach Manager
Gemini Observatory, Hilo, HI
Email: pmichaud"at"gemini.edu
Cell: (808) 936-6643
Desk: (808) 974-2510

Science Contacts:

Katherine de Kleer
University of California Berkeley
Email: kdekleer"at"berkeley.edu

Imke de Pater
University of California Berkeley
Email: imke"at"berkeley.edu

Peter Michaud | Eurek Alert!
Further information:
http://www.gemini.edu/node/12233

Further reports about: Gemini Icarus NSF Observatory Telescope UCB Volcanoes activity telescopes

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>