Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Extreme' telescopes find the second-fastest-spinning pulsar

06.09.2017

By following up on mysterious high-energy sources mapped out by NASA's Fermi Gamma-ray Space Telescope, the Netherlands-based Low Frequency Array (LOFAR) radio telescope has identified a pulsar spinning at more than 42,000 revolutions per minute, making it the second-fastest known.

A pulsar is the core of a massive star that exploded as a supernova. In this stellar remnant, also called a neutron star, the equivalent mass of half a million Earths is crushed into a magnetized, spinning ball no larger than Washington, D.C. The rotating magnetic field powers beams of radio waves, visible light, X-rays and gamma rays. If a beam happens to sweep across Earth, astronomers observe regular pulses of emission and classify the object as a pulsar.


This animation shows a black widow pulsar like J0952 together with its small stellar companion, as seen from within their orbital plane. Powerful radiation and the pulsar's "wind" -- an outflow of high-energy particles -- strongly heat the facing side of the companion, evaporating it over time.

Credit: NASA's Goddard Space Flight Center/Cruz deWilde

"Roughly a third of the gamma-ray sources found by Fermi have not been detected at other wavelengths," said Elizabeth Ferrara, a member of the discovery team at NASA's Goddard Space Center in Greenbelt, Maryland.

"Many of these unassociated sources may be pulsars, but we often need follow-up from radio observatories to detect the pulses and prove it. There's a real synergy across the extreme ends of the electromagnetic spectrum in hunting for them."

The new object, named PSR J0952-0607 -- or J0952 for short -- is classified as a millisecond pulsar and is located between 3,200 and 5,700 light-years away in the constellation Sextans. The pulsar contains about 1.4 times the sun's mass and is orbited every 6.4 hours by a companion star that has been whittled away to less than 20 times the mass of the planet Jupiter. The scientists report their findings in a paper published in the Sept. 10 issue of The Astrophysical Journal Letters and now available online.

At some point in this system's history, matter began streaming from the companion and onto the pulsar, gradually raising its spin to 707 rotations a second, or more than 42,000 rpm, and greatly increasing its emissions. Eventually, the pulsar began evaporating its companion, and this process continues today.

Because of their similarity to spiders that consume their mates, systems like J0952 are called black widow or redback pulsars, depending on how much of the companion star remains. Most of the known systems of these types were found by following up Fermi unassociated sources.

The LOFAR discovery also hints at the potential to find a new population of ultra-fast pulsars.

"LOFAR picked up pulses from J0952 at radio frequencies around 135 MHz, which is about 45 percent lower than the lowest frequencies of conventional radio searches," said lead author Cees Bassa at the Netherlands Institute for Radio Astronomy (ASTRON). "We found that J0952 has a steep radio spectrum, which means its radio pulses fade out very quickly at higher frequencies. It would have been a challenge to find it without LOFAR."

Theorists say pulsars could rotate as fast as 72,000 rpm before breaking apart, yet the fastest spin known -- by PSR J1748-2446ad, reaching nearly 43,000 rpm -- is just 60 percent of the theoretical maximum. Perhaps pulsars with faster periods simply can't form. But the gap between theory and observation may also result from the difficulty in detecting the fastest rotators.

"There is growing evidence that the fastest-spinning pulsars tend to have the steepest spectra," said co-author Ziggy Pleunis, a doctoral student at McGill University in Montreal. The first millisecond pulsar discovered with LOFAR, which was found by Pleunis, is J1552+5437, which spins at 25,000 rpm and also exhibits a steep spectrum. "Since LOFAR searches are more sensitive to these steep-spectrum radio pulsars, we may find that even faster pulsars do, in fact, exist and have been missed by surveys at higher frequencies," he explained.

During its nine years in orbit, Fermi has played a role in the discovery of more than 100 pulsars, either through direct detection of gamma-ray pulses or radio follow-up of unassociated sources.

LOFAR is a radio telescope composed of an international network of antenna stations designed to observe the universe at frequencies between 10 and 250 MHz. Operated by ASTRON, the network includes stations in the Netherlands, Germany, Sweden, the U.K., France, Poland and Ireland.

###

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

For more information about NASA's Fermi, visit:

http://www.nasa.gov/fermi

Francis Reddy | EurekAlert!

Further reports about: Fermi Goddard Space Flight Center LOFAR NASA Space Telescopes companion star pulsars

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>