Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme Jets Take New Shape

18.02.2010
Jets of particles streaming from black holes in far-away galaxies operate differently than previously thought, according to a study published today in Nature.

The new study reveals that most of the jet's light—gamma rays, the universe's most energetic form of light—is created much farther from the black hole than expected and suggests a more complex shape for the jet.

The research was led by scientists at the Kavli Institute for Particle Astrophysics and Cosmology, jointly located at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University, with participation from scientists from around the world. The study included data from more than 20 telescopes including the Fermi Gamma-ray Space Telescope and KANATA telescope.

High above the flat Milky Way galaxy, bright galaxies called blazars dominate the gamma-ray sky, discrete spots on the dark backdrop of the universe. As nearby matter falls into the black hole at the center of a blazar, "feeding" the black hole, it sprays some of this energy back out into the universe as a jet of particles.

"As the universe's biggest accelerators, blazar jets are important to understand," said KIPAC Research Fellow Masaaki Hayashida, who serves as corresponding author on the paper with KIPAC Astrophysicist Greg Madejski. "But how they are produced and how they are structured is not well understood. We're still looking to understand the basics."

Researchers had previously theorized that such jets are held together by strong magnetic field tendrils, while the jet's light is created by particles revolving around these wisp-thin magnetic field "lines."

Yet, until now, the details have been relatively poorly understood. The recent study upsets the prevailing understanding of the jet's structure, revealing new insight into these mysterious yet mighty beasts.

"This work is a significant step toward understanding the physics of these jets," said KIPAC Director Roger Blandford. "It's this type of observation that is going to make it possible for us to figure out their anatomy."

Locating the Gamma Rays
Over a full year of observations, the researchers focused on one particular blazar jet, located in the constellation Virgo, monitoring it in many different wavelengths of light: gamma-ray, X-ray, optical, infrared and radio. Blazars continuously flicker, and researchers expected continual changes in all types of light. Midway through the year, however, researchers observed a spectacular change in the jet's optical and gamma-ray emission: a 20-day-long flare in gamma rays was accompanied by a dramatic change in the jet's optical light.

Although most optical light is unpolarized—consisting of light rays with an equal mix of all polarizations or directionality—the extreme bending of energetic particles around a magnetic field line can polarize light. During the 20-day gamma-ray flare, optical light streaming from the jet changed its polarization. This temporal connection between changes in the gamma-ray light and changes in the optical light suggests that both types of light are created in the same geographical region of the jet; during those 20 days, something in the local environment altered to cause both the optical and gamma-ray light to vary.

"We have a fairly good idea of where in the jet optical light is created; now that we know the gamma rays and optical light are created in the same place, we can for the first time determine where the gamma rays come from," said Hayashida.

This knowledge has far-reaching implications about how energy escapes a black hole. The great majority of energy released in a jet escapes in the form of gamma rays, and researchers previously thought that all of this energy must be released near the black hole, close to where the matter flowing into the black hole gives up its energy in the first place. Yet the new results suggest that—like optical light—the gamma rays are emitted relatively far from the black hole. This, Hayashida and Madejski said, in turn suggests that the magnetic field lines must somehow help the energy travel far from the black hole before it is released in the form of gamma rays.

"What we found was very different from what we were expecting," said Madejski. "The data suggest that gamma rays are produced not one or two light days from the black hole [as was expected] but closer to one light year. That's surprising."

Rethinking Jet Structure
In addition to revealing where in the jet light is produced, the gradual change of the optical light's polarization also reveals something unexpected about the overall shape of the jet: the jet appears to curve as it travels away from the black hole.

"At one point during a gamma-ray flare, the polarization rotated about 180 degrees as the intensity of the light changed," said Hayashida. "This suggests that the whole jet curves."

This new understanding of the inner workings and construction of a blazar jet requires a new working model of the jet's structure, one in which the jet curves dramatically and the most energetic light originates far from the black hole. This, Madejski said, is where theorists come in. "Our study poses a very important challenge to theorists: how would you construct a jet that could potentially be carrying energy so far from the black hole? And how could we then detect that? Taking the magnetic field lines into account is not simple. Related calculations are difficult to do analytically, and must be solved with extremely complex numerical schemes."

Theorist Jonathan McKinney, a Stanford University Einstein Fellow and expert on the formation of magnetized jets, agrees that the results pose as many questions as they answer. "There's been a long-time controversy about these jets—about exactly where the gamma-ray emission is coming from. This work constrains the types of jet models that are possible," said McKinney, who is unassociated with the recent study. "From a theoretician's point of view, I'm excited because it means we need to rethink our models."

As theorists consider how the new observations fit models of how jets work, Hayashida, Madejski and other members of the research team will continue to gather more data. "There's a clear need to conduct such observations across all types of light to understand this better," said Madejski. "It takes a massive amount of coordination to accomplish this type of study, which included more than 250 scientists and data from about 20 telescopes. But it's worth it."

With this and future multi-wavelength studies, theorists will have new insight with which to craft models of how the universe's biggest accelerators work.

The gamma-ray observations used in this study were made by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, an astrophysics and particle physics partnership developed by NASA in collaboration with the U.S. Department of Energy Office of Science, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. LAT collaboration members were key participants in the development of this research. SLAC National Accelerator Laboratory managed construction of the LAT and now plays the central role in science operations, data processing and making scientific data available to collaborators for analysis.

The optical polarization data that played a crucial role in this study was taken by the KANATA collaboration, using the KANATA telescope located in Higashihiroshima, Japan. The KANATA telescope is operated by Hiroshima University.

The GASP-WEBT observatories participating in this work are Abastumani, Calar Alto, Campo Imperatore, Crimean, Kitt Peak (MDM), L'Ampolla, Lowell (Perkins-PRISM), Lulin, Roque de los Muchachos (KVA and Liverpool), San Pedro Ma´rtir, St Petersburg for the optical–NIR bands, and Mauna Kea (SMA),Medicina, Metsahovi, Noto and UMRAO for the millimeter radio band.

The campaign also included data from NASA satellites Swift and the ROSSI X-ray Timing Explorer, and the Japanese satellite Suzaku.

Melinda Lee | EurekAlert!
Further information:
http://www.slac.stanford.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>