Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme events in the brain

26.02.2016

Physicists at the Universities of Bonn and Oldenburg have developed a model whose behavior – although based on strict rules – can apparently change spontaneously. There are also changes of this type in nature, for example, in the development of migraine attacks or epileptic seizures. The mechanism, described for the first time by the researchers, could help to better understand extreme events such as these. The work will be published soon in the professional journal "Physical Review X", and it is already available online.

Irregular fiery red rings move across the computer screen. They enlarge, merge together, dissipate, form offspring – a constant cycle of emergence and decay. But suddenly the screen grows dark; the rings have disappeared. For a few seconds, nothing happens.


A so-called chaotic saddle which describes the behavior of the model developed in Bonn and Oldenburg. It can be understood as a type of curved horse saddle on which a ball is rolling along.

(c) Image: Neurophysics Group of the Department of Epileptology Bonn

Then the dark surface begins to pulsate. It rhythmically changes its color, almost imperceptibly at first but this becomes clearer. Shortly thereafter there is a second change: The entire surface suddenly flashes red. Finally, the rings reappear; the extreme event is over.

Something similar may appear in the brain when a migraine attack begins or an epileptic seizure develops: Suddenly, billions of neurons simultaneously enter an exceptional state. The rules which they normally obey appear to be overridden all at once.

The software depicting its results on the computer screen in the office of the Department of Epileptology at the University of Bonn Hospital shows very similar behavior: Seemingly out of nowhere, at completely unpredictable intervals, the underlying model changes its dynamics. What is astonishing is that it actually obeys simple rules which nonetheless create a kind of randomness.

Small-world effects

This model is a network of many thousands of individual elements, the nodes. These are interconnected – they can thus communicate with and influence each other. In this process, they interact not only with their neighbors but also with some remote nodes. Scientists refer to a "small-world" network. Nerve cells in the brain communicate with each other in a very similar way.

Although the rules of communication are precisely determined, networks of this type demonstrate a very complex behavior. On the one hand, this is due to the multitude of nodes, and on the other hand due to the wiring connecting these nodes. "We have now been able to show that the behavior of such networks can spontaneously change," explains Gerrit Ansmann, lead author of the work and doctoral candidate in the Neurophysics group.

"However, these changes only occur under certain conditions," explains Prof. Dr. Klaus Lehnertz, head of the group. "We hope, with our model, to be able to better understand the conditions under which extreme events develop in the brain."

The switching between various patterns of activity including the generation and termination of extreme events is based on a fundamental mechanism, which can also be translated to other system, e.g. to patterns of excitation in the heart. “This generality allows for broad applications of our findings in other scientific fields”, underlines Prof. Dr. Ulrike Feudel, head of the group Theoretical Physics/Complex Systems at the Institute for Chemistry and Biology of the Marine Environment of the University of Oldenburg.

The work is part of a project funded by the Volkswagen foundation. In this project, the scientists investigate the mechanisms through which extreme events develop using the examples of epileptic seizures and toxic algal blooms.

Publication: Gerrit Ansmann, Klaus Lehnertz and Ulrike Feudel: Self-induced switchings between multiple space–time patterns on complex networks of excitable units

Media contact information:

Prof. Dr. Klaus Lehnertz
Neurophysics Group
Department of Epileptology
University of Bonn Hospital
Tel. ++49-228-28715864
E-Mail: Klaus.Lehnertz@ukb.uni-bonn.de

Prof. Dr. Ulrike Feudel
Theoretical Physics/Complex Systems
Institute for Chemistry and Biology of the Marine Environment
Carl von Ossietzky University Oldenburg
Tel. ++49-441-7982790
E-Mail: ulrike.feudel@uni-oldenburg.de

Weitere Informationen:

http://arxiv.org/abs/1602.02177 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>