Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme events in the brain

26.02.2016

Physicists at the Universities of Bonn and Oldenburg have developed a model whose behavior – although based on strict rules – can apparently change spontaneously. There are also changes of this type in nature, for example, in the development of migraine attacks or epileptic seizures. The mechanism, described for the first time by the researchers, could help to better understand extreme events such as these. The work will be published soon in the professional journal "Physical Review X", and it is already available online.

Irregular fiery red rings move across the computer screen. They enlarge, merge together, dissipate, form offspring – a constant cycle of emergence and decay. But suddenly the screen grows dark; the rings have disappeared. For a few seconds, nothing happens.


A so-called chaotic saddle which describes the behavior of the model developed in Bonn and Oldenburg. It can be understood as a type of curved horse saddle on which a ball is rolling along.

(c) Image: Neurophysics Group of the Department of Epileptology Bonn

Then the dark surface begins to pulsate. It rhythmically changes its color, almost imperceptibly at first but this becomes clearer. Shortly thereafter there is a second change: The entire surface suddenly flashes red. Finally, the rings reappear; the extreme event is over.

Something similar may appear in the brain when a migraine attack begins or an epileptic seizure develops: Suddenly, billions of neurons simultaneously enter an exceptional state. The rules which they normally obey appear to be overridden all at once.

The software depicting its results on the computer screen in the office of the Department of Epileptology at the University of Bonn Hospital shows very similar behavior: Seemingly out of nowhere, at completely unpredictable intervals, the underlying model changes its dynamics. What is astonishing is that it actually obeys simple rules which nonetheless create a kind of randomness.

Small-world effects

This model is a network of many thousands of individual elements, the nodes. These are interconnected – they can thus communicate with and influence each other. In this process, they interact not only with their neighbors but also with some remote nodes. Scientists refer to a "small-world" network. Nerve cells in the brain communicate with each other in a very similar way.

Although the rules of communication are precisely determined, networks of this type demonstrate a very complex behavior. On the one hand, this is due to the multitude of nodes, and on the other hand due to the wiring connecting these nodes. "We have now been able to show that the behavior of such networks can spontaneously change," explains Gerrit Ansmann, lead author of the work and doctoral candidate in the Neurophysics group.

"However, these changes only occur under certain conditions," explains Prof. Dr. Klaus Lehnertz, head of the group. "We hope, with our model, to be able to better understand the conditions under which extreme events develop in the brain."

The switching between various patterns of activity including the generation and termination of extreme events is based on a fundamental mechanism, which can also be translated to other system, e.g. to patterns of excitation in the heart. “This generality allows for broad applications of our findings in other scientific fields”, underlines Prof. Dr. Ulrike Feudel, head of the group Theoretical Physics/Complex Systems at the Institute for Chemistry and Biology of the Marine Environment of the University of Oldenburg.

The work is part of a project funded by the Volkswagen foundation. In this project, the scientists investigate the mechanisms through which extreme events develop using the examples of epileptic seizures and toxic algal blooms.

Publication: Gerrit Ansmann, Klaus Lehnertz and Ulrike Feudel: Self-induced switchings between multiple space–time patterns on complex networks of excitable units

Media contact information:

Prof. Dr. Klaus Lehnertz
Neurophysics Group
Department of Epileptology
University of Bonn Hospital
Tel. ++49-228-28715864
E-Mail: Klaus.Lehnertz@ukb.uni-bonn.de

Prof. Dr. Ulrike Feudel
Theoretical Physics/Complex Systems
Institute for Chemistry and Biology of the Marine Environment
Carl von Ossietzky University Oldenburg
Tel. ++49-441-7982790
E-Mail: ulrike.feudel@uni-oldenburg.de

Weitere Informationen:

http://arxiv.org/abs/1602.02177 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

nachricht Mapping electromagnetic waveforms
22.07.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>