Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosion of a Low-Mass Helium Star in a Binary — First Evidence of a Hydrogen-deficient Supernova Progenitor

17.10.2014

A group of researchers led by Melina Bersten of Kavli IPMU recently presented a model that provides the first characterization of the progenitor for a hydrogen-deficient supernova.

Their model predicts that a bright hot star, which is the binary companion to an exploding object, remains after the explosion. To verify their theory, the group secured observation time with the Hubble Space Telescope (HST) to search for such a remaining star. Their findings, which are reported in the October 2014 issue of The Astronomical Journal, have important implications for the evolution of massive stars.


An artist’s conception of a binary progenitor system of the supernova iPTF13bvn. Larger diameter but smaller mass (4 times mass of the Sun) herium star shown on the left is to explode. The companion star shown on the right is a hydrogen rich star and 30 times mass of the Sun.tim

For years astronomers have searched for the elusive progenitors of hydrogen-deficient stellar explosions without success. However, this changed in June 2013 with the appearance of supernova iPTF13bvn and the subsequent detection of an object at the same location in archival images obtained before the explosion using the HST.

The interpretation of the observed object is controversial. The team led by Bersten presented a self-consistent picture using models of supernova brightness and progenitor evolution. In their picture, the more massive star in a binary system explodes after transferring mass to its companion.

One of the challenges in astrophysics is identifying which star produces which supernova. This is particularly problematic for supernovae without hydrogen, which are called Types Ib or Ic, because the progenitors have yet to be detected directly.

However, the ultimate question is: “How do progenitor stars remove their hydrogen-rich envelopes during their evolution?” Two competing mechanisms have been proposed. One hypothesizes that a strong wind produced by a very massive star blows the outer hydrogen layers, while the other suggests that a gravitationally bound binary companion star removes the outer layers.

The latter case does not require a very massive star. Because these two scenarios predict vastly different progenitor stars, direct detection of the progenitor for this type of supernova can provide definitive clues about the preferred evolutionary path.

When young Type Ib supernova iPTF13bvn was discovered in nearby spiral galaxy NGC 5806, astronomers hoped to find its progenitor. Inspecting the available HST images did indeed reveal an object, providing optimism that the first hydrogen-free supernova progenitor would at last be identified. Due to the object’s blue hue, it was initially suggested that the object was a very hot, very massive, evolved star with a compact structure, called a “Wolf-Rayet” star. (Using models of such stars, a group based in Geneva was able to reproduce the brightness and color of the pre-explosion object with a Wolf-Rayet star that was born with over 30 times the mass of the Sun and died with 11 times the solar mass.)

"Based on such suggestions, we decided to check if such a massive star is consistent with the supernova brightness evolution," says Melina Bersten. However, the results are inconsistent with a Wolf-Rayet star; the exploding star must have been merely four times the mass of the Sun, which is much smaller than a Wolf-Rayet star. “If the mass was this low and the supernova lacked hydrogen, our immediate conclusion is that the progenitor was part of a binary system,” adds Bersten.

Because the problem requires a more elaborate solution, the team set out to simulate the evolution of a binary system with mass transfer in order to determine a configuration that can explain all the observational evidence (a blue pre-explosion object with a relatively low mass devoid of hydrogen). “We tested several configurations and came up with a family of possible solutions,” explains Omar Benvenuto of IALP, Argentina.

“Interestingly, the mass transfer process dictates the observational properties of the exploding star, so it allows suitable solutions to be derived even if the mass of the stars is varied,” adds Benvenuto. The team chose the case where two stars are born with 20 and 19 times the mass of the Sun. The mass transfer process causes the larger star to retain only four times the solar mass before exploding. Most importantly, the smaller star may trap part of the transferred mass, becoming a very bright and hot star.

The existence of a hot star would provide strong evidence for the binary model presented by Bersten and collaborators. Fortunately, such a prediction can be directly tested once the supernova fades because the hot companion should become evident. “We have requested and obtained observation time with the HST to search for the companion star in 2015,” comments Gaston Folatelli of Kavli IPMU. “Until then, we must wait patiently to see if we can identify the progenitor of a hydrogen-free supernova for the first time,” Bersten adds.

(Originally published by the University of Tokyo)

James Cohen | Eurek Alert!
Further information:
http://www.kavlifoundation.org/kavli-news/

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>