Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring the secrets of dark matter

19.02.2010
Even the biggest Star Trek fan would probably have trouble understanding the technical details of the research done by Queen's University Particle Astrophysics Professor Wolfgang Rau of Kingston, Canada.

Professor Rau is the only Canadian researcher among the group of 60 scientists involved in the Cryogenic Dark Matter Search experiment (CDMS) whose latest findings are published in the latest edition of Science magazine. Professor Rau says the project is among the top two or three most important experiments on this subject in the world.

He uses a simple analogy to explain his complex search for dark matter – the difficult-to-detect particles that played a central role in the evolution of the Universe and the formation of our galaxy.

"It's kind of trying to find a needle in a haystack. But we tend to do things a little differently in science. Instead of just digging for the needle, we are looking at getting rid of some of the hay," says Professor Rau, who also holds a Canada Research Chair position in particle astrophysics.

The needle would be an interaction between a dark matter particle with ordinary matter in a particle detector, while the hay would represent interactions of particles from other sources such as cosmic radiation, referred to as "background".

Two events recorded during the CDMS experiment had the characteristics of an interaction involving dark matter particle.

"We do additional tests to see if these interactions have come from background sources or if they were indeed from dark matter particles," says Professor Rau. "We have seen these two events and so far we really can't say what it is. We have reached the limit of what our experiment can do with this configuration. Presently we are upgrading our detectors to improve our sensitivity, but eventually we plan to build a much bigger experiment at SNOLAB, the [Queen's affiliated] underground laboratory near Sudbury."

Understanding dark matter will help scientists answer basic questions about the origin of the universe.

"Dark matter makes up roughly 85 per cent of the matter in the universe and we don't know what it is," says Professor Rau. "Dark matter is responsible for us having galaxies in the first place and plays a very important role in the evolution of the universe. It is fundamental science what we are doing. If there was no dark matter, we wouldn't be here."

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>