Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exploding star shines brighter

Researchers at Stockholm University have studied the exploding star Supernova 1987A. In an article published in Nature, they present findings that show, among other things, that the supernova has entered a new phase of shining ever more brightly.

“Our study shows that the luminosity declined until about 2001 owing to radioactive disintegration of compounds formed by the explosion. Over the last ten years, however, it began to shine more brightly again,” says Josefin Larsson at the Department of Astronomy.

Caption The images were captured in the red segment of the visible spectrum. However, the colours were added afterward and do not correspond to what we would see with our eyes. Different scales were used for the ring and the rest of the image to make details stand out more clearly. Stockholm university

“In the article we show that the increase is a result of x-ray radiation from the surrounding gas ring shining on the supernova. The change in the dominant energy source marks the transition from a supernova to what we call a supernova remnant.”

A supernova is the extremely bright explosion that occurs when a star of high density dies. The outer parts of the star are slung outward, while the innermost part forms a neutron star or a black hole. In the explosion, heavy elements are formed that subsequently come to be parts of new stars and planets.

”Supernova 1987A exploded in our neighbouring galaxy the Large Magellanic Cloud roughly 24 years ago. Since the supernova is so close, we have been able to study the consequences of the explosion with great precision for a long time with the aid of the Hubble Space Telescope,” says Larsson.

Images of Supernova 1987A taken with the Hubble Space Telescope between 1994 and 2009 show that what is shining in the middle are the remains of the star that exploded, while the ring consists of gas emitted from the star tens of thousands of years prior to the explosion. It can clearly be seen how the material that was sent out in the explosion is expanding and changing in luminosity over time.

The scientists from Stockholm University that took part in the project are Josefin Larsson, Claes Fransson, Göran Östlin, Per Gröningsson, Anders Jerkstrand, Cecilia Kozma, Jesper Sollerman, and Peter Lundqvist.

Further information
Josefin Larsson at the Department of Astronomy, Oskar Klein Centre, Stockholm University, phone: +46 (0)8-5537 8512, e-mail
Weitere Informationen: (Article in nature: X-ray illumination of the ejecta of supernova 1987A)

Viktor Sandqvist | idw
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>