Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explaining the Mystery of the Voyager: RUB and US scientists reexamine theory after more than 60 years

25.02.2009
Simulation: Complex, hot solar wind turbulences

With a new 3D-model for energy simulation scientists from Bochum and Huntsville, USA, are studying the 'physical mystery' of the Voyager.

Over 30 years ago the spacecraft detected particles in solar wind which were 'hotter' than they should have been according to the existing theory expounded by the mathematician Andrey Kolmogorov in 1941.

The Bochum plasma physicists Prof. Padma Kant Shukla and Dr. Dastgeer Shaikh from the University of Alabama are thereby the first to verify by means of computer simulation that the non-linear characteristics of turbulences in the plasma carried by the solar wind differs from the familiar model for dynamic fluids. The scientists have published their results in 'Physical Review Letters.'

Recognized for over 60 years: The 5/3 law.

According to Kolmogorov's theory there is a relationship between the size of eddies and the amount of energy released or dissipated by hot solar particles. The smaller an eddy gets the more it interacts with its surroundings, so the greater the energy loss.

For example this can be observed in the turbulent wake caused by a bridge piling in a flowing river. The energy of the tumbling wake dissipates only at the edges, where the smallest eddies interact with the smooth flowing water. The Kolmogorov law set the exponents for the relationship between eddy size and energy at 5/3: In a dynamic fluid, the amount of energy released should increase by a factor of x5/3 when the size of the eddy is reduced by a factor of x.

7/3 law: Efficiency increases by 40 percent

Observations made by the Voyager, other spacecraft and satellites show that the energy flow in plasma tends to follow a 7/3 law rather than the so-called 5/3 law proposed by Kolmogorov.

The dynamic spectrum of the wave lengths in plasma is therefore significantly greater than in other hydrodynamic systems. The efficiency of energy transfer between hot particles carried in the solar wind and cooler particles increases by 40 percent. The computer model developed by Shukla and Shaikh explains the sudden increase by the interaction between magnetic fields and the outward flowing currents of hot atoms, ions and electrons.

The magnetic field is responsible for energy cascades. Influenced and 'constrained' by magnetic fields, the small eddies serve to "damp" the energy in them.

Explanation for gigantic quantities of cosmic energy

"This is the same kind of thing that happens in a microwave oven," Shaikh said. "If there is nothing there, the microwaves go out without releasing their energy. But the microwaves are absorbed by the food, causing them to release the energy and heat the food."

"This development of the two scientists helps us to understand how the particles in the solar wind contain enormous quantities of energy. Prof. Shukla continued "It might also explain where the fastest and most powerful cosmic rays get their boost." Scientists have struggled for decades to find plausible natural processes that could explain how some cosmic rays (atoms stripped of their electrons) are accelerated to almost the speed of light.

Title picture

3D simulations of fluctuation spectra in the Hall-MHD plasma, Dastgeer Shaikh and P K Shukla, Physical Review Letters 102, 045004 (2009): DOI:10.1103/PhysRevLett.102.045004

Further information

Prof. Dr. Dr. h.c. mult. Padma Kant Shukla
Theoretische Physik IV, Ruhr-Universität Bochum
Tel. 0234/32-23759
E-Mail: ps@tp4.rub.de
Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>