Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explaining the Mystery of the Voyager: RUB and US scientists reexamine theory after more than 60 years

25.02.2009
Simulation: Complex, hot solar wind turbulences

With a new 3D-model for energy simulation scientists from Bochum and Huntsville, USA, are studying the 'physical mystery' of the Voyager.

Over 30 years ago the spacecraft detected particles in solar wind which were 'hotter' than they should have been according to the existing theory expounded by the mathematician Andrey Kolmogorov in 1941.

The Bochum plasma physicists Prof. Padma Kant Shukla and Dr. Dastgeer Shaikh from the University of Alabama are thereby the first to verify by means of computer simulation that the non-linear characteristics of turbulences in the plasma carried by the solar wind differs from the familiar model for dynamic fluids. The scientists have published their results in 'Physical Review Letters.'

Recognized for over 60 years: The 5/3 law.

According to Kolmogorov's theory there is a relationship between the size of eddies and the amount of energy released or dissipated by hot solar particles. The smaller an eddy gets the more it interacts with its surroundings, so the greater the energy loss.

For example this can be observed in the turbulent wake caused by a bridge piling in a flowing river. The energy of the tumbling wake dissipates only at the edges, where the smallest eddies interact with the smooth flowing water. The Kolmogorov law set the exponents for the relationship between eddy size and energy at 5/3: In a dynamic fluid, the amount of energy released should increase by a factor of x5/3 when the size of the eddy is reduced by a factor of x.

7/3 law: Efficiency increases by 40 percent

Observations made by the Voyager, other spacecraft and satellites show that the energy flow in plasma tends to follow a 7/3 law rather than the so-called 5/3 law proposed by Kolmogorov.

The dynamic spectrum of the wave lengths in plasma is therefore significantly greater than in other hydrodynamic systems. The efficiency of energy transfer between hot particles carried in the solar wind and cooler particles increases by 40 percent. The computer model developed by Shukla and Shaikh explains the sudden increase by the interaction between magnetic fields and the outward flowing currents of hot atoms, ions and electrons.

The magnetic field is responsible for energy cascades. Influenced and 'constrained' by magnetic fields, the small eddies serve to "damp" the energy in them.

Explanation for gigantic quantities of cosmic energy

"This is the same kind of thing that happens in a microwave oven," Shaikh said. "If there is nothing there, the microwaves go out without releasing their energy. But the microwaves are absorbed by the food, causing them to release the energy and heat the food."

"This development of the two scientists helps us to understand how the particles in the solar wind contain enormous quantities of energy. Prof. Shukla continued "It might also explain where the fastest and most powerful cosmic rays get their boost." Scientists have struggled for decades to find plausible natural processes that could explain how some cosmic rays (atoms stripped of their electrons) are accelerated to almost the speed of light.

Title picture

3D simulations of fluctuation spectra in the Hall-MHD plasma, Dastgeer Shaikh and P K Shukla, Physical Review Letters 102, 045004 (2009): DOI:10.1103/PhysRevLett.102.045004

Further information

Prof. Dr. Dr. h.c. mult. Padma Kant Shukla
Theoretische Physik IV, Ruhr-Universität Bochum
Tel. 0234/32-23759
E-Mail: ps@tp4.rub.de
Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>