Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explaining Bizarre Helium 4, a Likely Supersolid

02.11.2009
Writing in the latest issue of Physical Review Letters, theoretical physicists Boris Svistunov and Nikolai Prokofiev of the University of Massachusetts Amherst, with their student Gunes Soyler, propose a new explanation of certain striking properties of solid helium 4.

Suggesting that atoms in a solid can move or be transported through it seems as impossible as using a syringe to inject material into a billiard ball. It shouldn’t work. But it turns out to be possible under certain conditions in super-solid helium, as demonstrated in scientific testing by UMass Amherst experimental physicist Robert Hallock and his doctoral student Michael Ray, in which atoms are added to a solid.

As the theoreticians Svistunov and Prokofiev explain, supersolidity is somewhat analogous to superconductivity, which is the total lack of electrical resistance that occurs in metals held at very low temperatures. This phenomenon is harnessed today in magnetic resonance imaging machines, for example, where superconducting magnets transport an electric charge, that is electrons, without friction.

This same “superflow,” or supersolidity, was first predicted to occur in a non-metal solid in 1969 by several prominent theoretical physicists who said a solid also should conduct its own atoms without friction when held at sufficiently low temperatures. They proposed helium 4 as a candidate element for observing this in the laboratory. Although early experiments failed to support the existence of super transport in a solid, later work in several laboratories reignited interest.

Svistunov says, “We now know for sure that supersolidity does exist in helium 4, although in a form very different from what was expected in the original theoretical work, and with side effects going far beyond mere super transport.” He and colleagues base this confidence on their first-principles studies of regular and disordered solid helium, using a significant advance in computational science called the “worm algorithm” proposed by them in 1998 and recently applied to helium.

It turns out that a key to supersolidity lies in the nature of the solid. As Svistunov explains, “Our simulations clearly show that a perfect helium 4 crystal is not a supersolid. But we find that certain imperfections, called dislocations, have a superfluid core and thus can demonstrate super transport. This is a possibility first envisioned about 20 years ago by Sergey Shevchenko and it was demonstrated by UMass Amherst experimental physicists Robert Hallock and Michael Ray in 2008.”

According to Svistunov and Prokofiev, Hallock and Ray conducted the first and still unique direct experimental observation of super transport in solid helium 4 in an apparatus Svistunov has dubbed the “UMass sandwich.” It has two reservoirs of liquid helium, each connected by a rod of helium-filled porous Vycor glass to a sample of solid helium 4 kept at 459 degrees below zero Fahrenheit and pressurized to 26 atmospheres. The physicists create a temperature gradient of about 3 degrees across each of the Vycor rods, which keeps the two reservoirs liquid while the solid sample remains a cold solid.

At 459 degrees below zero and high pressure, helium normally wants to be solid, but the tiny pores in the Vycor rods allow the helium atoms to remain in the liquid state. The setup prevents atoms from solidifying despite the temperature and pressure and allows liquid-solid contact at the boundary between helium-filled Vycor and the solid helium, Hallock explains.

“We feed some helium atoms into one reservoir, and we then see an increase in pressure in the second reservoir, which is connected to the first only by a pathway through the Vycor rods and solid helium 4. Below a specific temperature we clearly observe that atoms move from one reservoir to the other through the solid helium, but at higher temperatures they do not. The question is how this super transport can happen.”

To date, according to Hallock, the remarkable observations so far rule out many mundane explanations. More importantly, the UMass Amherst experiments so far do not exclude the possibility that something quite remarkable is taking place, as Svistunov and Prokofiev propose. Hallock notes, “Everything observed so far is consistent with Boris and Nikolai’s predictions. While there are more tests to do, so far we have not refuted their ideas.” He adds that even more striking than the supersolidity per se is the so-called effect of giant isochoric, or constant-volume, compressibility that always is present when flow is observed in the experiment.

Basing their theory on first-principles simulations, Prokofiev, Svistunov and colleagues argue that this bizarre effect is due to a synergy between superfluidity in the cores of imperfections known as dislocations and the known ability of dislocations to “climb,” that is, grow under conditions when mass flow is provided to their cores. There are no practical implications of Svistunov and Prokofiev’s numerical model at present, but as Svistunov observes, “Sooner or later a good theory will become practical. And because we’ve used an unbiased, first principles approach, this work is very meaningful for helping us to understand some of the fundamental properties of quantum matter.”

Svistunov, Prokofiev and Soyler collaborated with colleagues at Harvard and the City University of New York on their recent publication.

Boris Svistunov | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>