Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments in the realm of the impossible

27.05.2015

Physicists of Jena University (Germany) simulate for the first time charged Majorana particles – elementary particles, which are not supposed to exist

March 1938: The Italian elementary particle physicist Ettore Majorana boarded a post ship in Naples, heading for Palermo. But he either never arrives there - or he leaves the city straight away – ever since that day there has been no trace of the exceptional scientist and until today his mysterious disappearance remains unresolved.


Alexander Szameit and his team developed a photonic set-up that can simulate non-physical processes in a laboratory.

Photo: Jan-Peter Kasper/FSU

Since then, Majorana, a pupil of the Nobel Prize winner Enrico Fermi, has more or less been forgotten. What the scientific world does remember though is a theory about nuclear forces, which he developed, and a very particular elementary particle.

“This particle named after Majorana, the so-called Majoranon, has some amazing characteristics“, the physicist Professor Dr. Alexander Szameit of the Friedrich Schiller University Jena says. “Characteristics which are not supposed to be existent in our real world.“

Majorana particles are, for instance, their own antiparticles: Internally they combine completely opposing characteristics – like opposing charges and spins. If they were to exist, they would extinguish themselves immediately. “Therefore, Majoranons are of an entirely theoretical nature and cannot be measured in experiments.“

Together with colleagues from Austria, India, and Singapore, Alexander Szameit and his team succeeded in realizing the impossible. In the new edition of the science magazine 'Optica' they explain their approach: Szameit and his team developed a photonic set-up that consists of complex waveguide circuits engraved in a glass chip, which enables them to simulate charged Majorana particles and, thus, allows to conduct physical experiments.

“At the same time we send two rays of light through parallel running waveguide lattices, which show the opposing characteristics separately,“ explains Dr. Robert Keil, the first author of the study. After evolution through the lattices, the two waves interfere and form an optical Majoranon, which can be measured as a light distribution. Thus, the scientists create an image that catches this effect like a photograph – in this case the state of a Majoranon at a defined moment in time. “With the help of many of such single images the particles can be observed like in a film and their behaviour can be analyzed,“ says Keil.

This model allows the Jena scientists to enter completely unknown scientific territory, as Alexander Szameit stresses. “Now, it is possible for us to gain access to phenomena that so far only have been described in exotic theories.“ With the help of this system, one can conduct experiments in which conservation of charge – one of the pillars of modern physics – can easily be suspended. “Our results show that one can simulate non-physical processes in a laboratory and, thus, can make practical use of exotic characteristics of particles that are impossible to observe in nature.“ Szameit foresees one particular promising application of simulated Majoranons in a new generation of quantum computers. “With this approach, much higher computing capacities than are possible at the moment can be achieved.“

Original Publication:
Keil R. et al. Optical simulation of charge conservation violation and Majorana dynamics. Optica, Vol. 2, Issue 5, pp. 454-459 (2015), doi: 10.1364/OPTICA.2.000454

Contact:
Prof. Dr. Alexander Szameit
Institute of Applied Physics
Friedrich Schiller University Jena
Albert-Einstein-Strasse 15, 07745 Jena
Germany
Phone: ++49 3641 947985
Email: alexander.szameit[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder |

More articles from Physics and Astronomy:

nachricht Optical Nanoscope Allows Imaging of Quantum Dots
23.01.2018 | Universität Basel

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

New formulas for exploring the age structure of non-linear dynamical systems

23.01.2018 | Interdisciplinary Research

Drones learn to navigate autonomously by imitating cars and bicycles

23.01.2018 | Information Technology

Enhanced ball screw drive with increased lifetime through novel double nut design

23.01.2018 | Machine Engineering

VideoLinks Science & Research
Overview of more VideoLinks >>>