Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experients may force revision of astrophysical models of the universe

20.03.2012
Ice giant planets have more water volume than formerly estimated, Sandia Labs Z accelerator tests indicate

In a challenge to current astrophysical models of the universe, researchers at Sandia National Laboratories Z machine and the University of Rostock in Germany have found that current estimates of ice-giant planetary interiors overstate water's compressibility by as much as 30 percent.

The work was reported in the paper "Probing the Interior of the Ice Giants" in the Feb. 27 Physical Review Letters.

"Our results question science's understanding of the internal structure of these planets," said Sandia lead author Marcus Knudson, "and should require revisiting essentially all the modeling of ice giants within and outside our solar system."

An accurate estimate of water's shrinking volume under the huge gravitational pressures of large planets is essential to astrophysicists trying to model the evolution of the universe. They need to assume how much space is taken up by water trapped under high density and pressure, deep inside a planet, to calculate how much is needed of other elements to flesh out the planet's astronomical image.

To come up with the composition of the so-called ice-giants Neptune and Uranus, as well as any of the ice-giant exoplanets being discovered in distant star systems, astrophysicists begin with the orbit, age, radius and mass of each planet. Then, using equations that describe the behavior of elements as the forming planet cooled, they calculate what light and heavy elements might have contributed to its evolution to end up with the current celestial object.

But if estimates of water volume are off-target, then so is everything else.

The measurements — 10 times more accurate than any previously reported — at Sandia's Z accelerator agree with results from a modern simulation effort that uses the quantum mechanics of Schrödinger's wave equation — the fundamental equation of wave mechanics — to predict the behavior of water under extreme pressure and density.

The model, developed through a University of Rostock and Sandia collaboration, is called "First Principles Modeling" because it contains no tuning parameters.

"You're solving Schrödinger's equation from a quantum mechanical perspective with hydrogen and oxygen as input; there aren't any knobs for finagling the result you want or expect," Knudson said.

The model's results are quite different from earlier chemical pictures of water's behavior under pressure, but agree quite well with the Z machine's test results, said Knudson. These results were achieved by using Z's magnetic fields to shoot tiny plates 40 times faster than a rifle bullet into a water-sample target a few millimeters away. The impact of each plate into the target created a huge shock wave that compressed the water to roughly one-fourth its original volume, momentarily creating conditions similar to those in the interior of the ice giants.

Sub-nanosecond observations captured the behavior of water under pressures and densities that occur somewhere between the surface and core of ice giants.

"We took advantage of recent, more precise methods to measure the speed of the shock wave moving through the water sample by measuring the Doppler shift of laser light reflected from the moving shock front, to 0.1 percent accuracy," said Knudson.

The re-shocked state of water was also determined by observing its behavior as the shock wave reflected back into the water from a quartz rear window (its characteristics also determined) in the target. These results provided a direct test of the First Principles model along a thermodynamic path that mimics the path one would follow if one could bore deep into a planet's interior.

Multiple experiments were performed, providing a series of results at increasing pressures to create an accurate equation of state. Such equations link changes in pressures with changes in temperatures and volumes.

Z can create more pressure — up to 20 megabars — than at Earth's core (roughly 3.5 megabars), and millions of times Earth's atmospheric pressure. The Z projectiles, called flyer plates, achieve velocities from 12 to 27 kilometers a second, or up to 60,000 mph. The pressure at the center of Neptune is roughly 8 megabars.

Water at Z's ice-giant pressures also was found to have reflectivity like that of a weak metal, raising the possibility that water's charged molecular fragments might be capable of generating a magnetic field. This could help explain certain puzzling aspects of the magnetic fields around Neptune and Uranus.

"Reducing uncertainty on the composition of planetary systems by precisely measuring the equation of state of water at extreme conditions can only help us understand how these systems formed," Knudson said.

These experimental techniques also are used at Z to study materials of critical importance to the nuclear weapons program. In addition to producing the largest amount of X-rays on Earth when firing, the huge pressures generated by Z make it useful to astrophysicists seeking data similar to that produced by black holes and neutron stars.

Also listed as paper authors are Mike Desjarlais, Ray Lemke and Thomas Mattsson from Sandia, and Martin French, Nadine Nettelmann and Ronald Redmer from the University of Rostock's Institute of Physics.

Research support was provided by the German Science Foundation and the National Nuclear Security Administration.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

neal singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>