Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Exotic Millisecond Pulsar Trio

06.01.2014
Previous studies of millisecond pulsars have explained their origin via mass transfer in binary systems.

The discovery of a millisecond pulsar in a triple system challenges current consensus. Thomas Tauris (Bonn) and Ed van den Heuvel (Amsterdam) have developed a semi-analytical model, which can resolve the puzzling formation of this exotic triple system.


Triple millisecond pulsar with its two white dwarf companions. According to the new model, the system survived three phases of mass transfer and a supernova explosion, remaining dynamically stable.

Thomas Tauris

Through theoretical calculations on the base of stellar evolution, they have demonstrated a plausible model which brings new insight to our knowledge of stellar interactions in multiple star systems. Their study can also help explain an increasing number of observed binary millisecond pulsars which seem to require a triple system origin.

Pulsars are among the most extreme celestial bodies known. They have radii of only 10 kilometres, but at the same time a mass exceeding that of our Sun. Pulsars are formed as the remnants of violent supernova explosions of massive stars. The fastest rotating neutron stars are known as millisecond pulsars. They are thought to be strongly magnetized, old neutron stars which have been spun up to high rotational frequencies by accumulation of mass and angular momentum from a companion star in a binary system. Today we know of about 200 such pulsars with spin periods between 1.4 and 10 milliseconds. These are located in both the Galactic Disk and in Globular Clusters.

Since the first binary pulsar was detected in 1974, theoretical astrophysicists have investigated mass transfer between stars and other binary interactions in order to explain their origin. A surprising new discovery has now revealed a millisecond pulsar in a triple system with two white dwarf companions, posing a unique challenge to stellar physicists to explain its formation.

"This is a truly amazing system with three degenerate objects. It has survived three phases of mass transfer and a supernova explosion, and yet it remained dynamically stable", says Thomas Tauris, theoretical astrophysicist and first author of the present study. "Pulsars have previously been found with planets and in recent years my observational colleagues have discovered a number of peculiar binary pulsars which seem to require a triple system origin. But this new millisecond pulsar is the first to be detected with two white dwarfs".

The new triple millisecond pulsar J0337+1715 was discovered recently by a joint American-European collaboration led by Scott Ransom from National Radio Astronomy Observatory (USA). The system is located in the constellation of Taurus at a distance of about 4000 light-years. It is in the Galactic disk, and not inside a globular cluster. Therefore, its existence cannot be explained simply as a result of dynamical encounter events in a dense stellar environment. During the last 6 months, Thomas Tauris and Ed van den Heuvel have developed a semi-analytical model to explain its existence. One of the key results obtained from their investigation is that the observed parameters reflect that both white dwarfs were indeed produced in the present system.

Triple systems often become dynamically unstable during their evolution leading to expulsion of one of the three stars. A major challenge was to find a solution that remained dynamically stable throughout the entire evolution, including the stage of the supernova explosion. "An interesting result of our new investigation is that the system evolved through a common envelope stage where both white dwarf progenitor stars were dragged into the envelope of the massive star due to frictional forces, causing their orbits to shrink by a large factor, thereby enabling survival of its subsequent explosion", says Ed van den Heuvel.

"Actually, we can apply several tests of stellar evolution with this new system and also make predictions about its 3-dimensional velocity which can be measured within a few years", concludes Thomas Tauris. "This will allow us to constrain the mass of the exploding star."

--------------------

This work has profited from a recent effort to bridge the Fundamental Physics in Radio Astronomy group at the Max-Planck-Institut für Radioastronomie (MPIfR), led by Michael Kramer, with the Stellar Physics group at the Argelander-Institut für Astronomie (AIfA) at University of Bonn, led by Norbert Langer. Michael Kramer and his colleagues are using the 100-m Effelsberg Radio Telescope to participate in several ongoing searches and discoveries of millisecond pulsars, while the stellar physicists at AIfA are modelling their formation and evolution.

Thomas Tauris has been working at the AIfA and MPIfR as a visiting research professor since 2010. Some of his recent work on the recycling of millisecond pulsars has been published jointly with Norbert Langer, Michael Kramer and other colleagues in Bonn. Together they host twice per year an international one-day workshop in Bonn, called Formation and Evolution of Neutron stars.

Original Paper:

Formation of the Galactic Millisecond Pulsar Triple System PSR J0337+1715 - a Neutron Star with Two Orbiting White Dwarfs , T. M. Tauris & E. P. J. van den Heuvel, 2014, Astrophysical Journal Letters, scheduled for online publication on January 06, 2014.

Pulsar Discovery Paper:

A millisecond pulsar in a stellar triple system, S.M. Ransom et al., 2014, Nature Online Publishing, doi:10.1038/nature12917.

http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12917.html

Local Contact:

Dr. Thomas M. Tauris
Argelander-Institut für Astronomie der Univ. Bonn
& Max-Planck-Institut für Radioastronomie
Phone: +49(0)228-73-3660
E-mail: tauris@astro.uni-bonn.de
Prof. Dr. Michael Kramer,
Director and Head of Research Group "Fundamental Physics in Radio Astronomy",
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49(0)228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Max-Planck-Institut für Radioastronomie.
Press and Public Outreach,
Phone: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de
Co-author Contact:
Prof. Dr. Ed van den Heuvel
Astronomical Institute `Anton Pannekoek´
Universiteit van Amsterdam
Phone: +31 (0) 20 525 7493
E-mail: E.P.J.vandenHeuvel@uva.nl

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de
http://www.mpifr-bonn.mpg.de/pressreleases/2014/1

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>