Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An Exotic Millisecond Pulsar Trio

Previous studies of millisecond pulsars have explained their origin via mass transfer in binary systems.

The discovery of a millisecond pulsar in a triple system challenges current consensus. Thomas Tauris (Bonn) and Ed van den Heuvel (Amsterdam) have developed a semi-analytical model, which can resolve the puzzling formation of this exotic triple system.

Triple millisecond pulsar with its two white dwarf companions. According to the new model, the system survived three phases of mass transfer and a supernova explosion, remaining dynamically stable.

Thomas Tauris

Through theoretical calculations on the base of stellar evolution, they have demonstrated a plausible model which brings new insight to our knowledge of stellar interactions in multiple star systems. Their study can also help explain an increasing number of observed binary millisecond pulsars which seem to require a triple system origin.

Pulsars are among the most extreme celestial bodies known. They have radii of only 10 kilometres, but at the same time a mass exceeding that of our Sun. Pulsars are formed as the remnants of violent supernova explosions of massive stars. The fastest rotating neutron stars are known as millisecond pulsars. They are thought to be strongly magnetized, old neutron stars which have been spun up to high rotational frequencies by accumulation of mass and angular momentum from a companion star in a binary system. Today we know of about 200 such pulsars with spin periods between 1.4 and 10 milliseconds. These are located in both the Galactic Disk and in Globular Clusters.

Since the first binary pulsar was detected in 1974, theoretical astrophysicists have investigated mass transfer between stars and other binary interactions in order to explain their origin. A surprising new discovery has now revealed a millisecond pulsar in a triple system with two white dwarf companions, posing a unique challenge to stellar physicists to explain its formation.

"This is a truly amazing system with three degenerate objects. It has survived three phases of mass transfer and a supernova explosion, and yet it remained dynamically stable", says Thomas Tauris, theoretical astrophysicist and first author of the present study. "Pulsars have previously been found with planets and in recent years my observational colleagues have discovered a number of peculiar binary pulsars which seem to require a triple system origin. But this new millisecond pulsar is the first to be detected with two white dwarfs".

The new triple millisecond pulsar J0337+1715 was discovered recently by a joint American-European collaboration led by Scott Ransom from National Radio Astronomy Observatory (USA). The system is located in the constellation of Taurus at a distance of about 4000 light-years. It is in the Galactic disk, and not inside a globular cluster. Therefore, its existence cannot be explained simply as a result of dynamical encounter events in a dense stellar environment. During the last 6 months, Thomas Tauris and Ed van den Heuvel have developed a semi-analytical model to explain its existence. One of the key results obtained from their investigation is that the observed parameters reflect that both white dwarfs were indeed produced in the present system.

Triple systems often become dynamically unstable during their evolution leading to expulsion of one of the three stars. A major challenge was to find a solution that remained dynamically stable throughout the entire evolution, including the stage of the supernova explosion. "An interesting result of our new investigation is that the system evolved through a common envelope stage where both white dwarf progenitor stars were dragged into the envelope of the massive star due to frictional forces, causing their orbits to shrink by a large factor, thereby enabling survival of its subsequent explosion", says Ed van den Heuvel.

"Actually, we can apply several tests of stellar evolution with this new system and also make predictions about its 3-dimensional velocity which can be measured within a few years", concludes Thomas Tauris. "This will allow us to constrain the mass of the exploding star."


This work has profited from a recent effort to bridge the Fundamental Physics in Radio Astronomy group at the Max-Planck-Institut für Radioastronomie (MPIfR), led by Michael Kramer, with the Stellar Physics group at the Argelander-Institut für Astronomie (AIfA) at University of Bonn, led by Norbert Langer. Michael Kramer and his colleagues are using the 100-m Effelsberg Radio Telescope to participate in several ongoing searches and discoveries of millisecond pulsars, while the stellar physicists at AIfA are modelling their formation and evolution.

Thomas Tauris has been working at the AIfA and MPIfR as a visiting research professor since 2010. Some of his recent work on the recycling of millisecond pulsars has been published jointly with Norbert Langer, Michael Kramer and other colleagues in Bonn. Together they host twice per year an international one-day workshop in Bonn, called Formation and Evolution of Neutron stars.

Original Paper:

Formation of the Galactic Millisecond Pulsar Triple System PSR J0337+1715 - a Neutron Star with Two Orbiting White Dwarfs , T. M. Tauris & E. P. J. van den Heuvel, 2014, Astrophysical Journal Letters, scheduled for online publication on January 06, 2014.

Pulsar Discovery Paper:

A millisecond pulsar in a stellar triple system, S.M. Ransom et al., 2014, Nature Online Publishing, doi:10.1038/nature12917.

Local Contact:

Dr. Thomas M. Tauris
Argelander-Institut für Astronomie der Univ. Bonn
& Max-Planck-Institut für Radioastronomie
Phone: +49(0)228-73-3660
Prof. Dr. Michael Kramer,
Director and Head of Research Group "Fundamental Physics in Radio Astronomy",
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49(0)228-525-278
Dr. Norbert Junkes,
Max-Planck-Institut für Radioastronomie.
Press and Public Outreach,
Phone: +49(0)228-525-399
Co-author Contact:
Prof. Dr. Ed van den Heuvel
Astronomical Institute `Anton Pannekoek´
Universiteit van Amsterdam
Phone: +31 (0) 20 525 7493

Norbert Junkes | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Identifying New Sources of Turbulence in Spherical Tokamaks
30.11.2015 | Princeton Plasma Physics Laboratory

nachricht Graphene microphone outperforms traditional nickel and offers ultrasonic reach
27.11.2015 | Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>