Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Exotic Millisecond Pulsar Trio

06.01.2014
Previous studies of millisecond pulsars have explained their origin via mass transfer in binary systems.

The discovery of a millisecond pulsar in a triple system challenges current consensus. Thomas Tauris (Bonn) and Ed van den Heuvel (Amsterdam) have developed a semi-analytical model, which can resolve the puzzling formation of this exotic triple system.


Triple millisecond pulsar with its two white dwarf companions. According to the new model, the system survived three phases of mass transfer and a supernova explosion, remaining dynamically stable.

Thomas Tauris

Through theoretical calculations on the base of stellar evolution, they have demonstrated a plausible model which brings new insight to our knowledge of stellar interactions in multiple star systems. Their study can also help explain an increasing number of observed binary millisecond pulsars which seem to require a triple system origin.

Pulsars are among the most extreme celestial bodies known. They have radii of only 10 kilometres, but at the same time a mass exceeding that of our Sun. Pulsars are formed as the remnants of violent supernova explosions of massive stars. The fastest rotating neutron stars are known as millisecond pulsars. They are thought to be strongly magnetized, old neutron stars which have been spun up to high rotational frequencies by accumulation of mass and angular momentum from a companion star in a binary system. Today we know of about 200 such pulsars with spin periods between 1.4 and 10 milliseconds. These are located in both the Galactic Disk and in Globular Clusters.

Since the first binary pulsar was detected in 1974, theoretical astrophysicists have investigated mass transfer between stars and other binary interactions in order to explain their origin. A surprising new discovery has now revealed a millisecond pulsar in a triple system with two white dwarf companions, posing a unique challenge to stellar physicists to explain its formation.

"This is a truly amazing system with three degenerate objects. It has survived three phases of mass transfer and a supernova explosion, and yet it remained dynamically stable", says Thomas Tauris, theoretical astrophysicist and first author of the present study. "Pulsars have previously been found with planets and in recent years my observational colleagues have discovered a number of peculiar binary pulsars which seem to require a triple system origin. But this new millisecond pulsar is the first to be detected with two white dwarfs".

The new triple millisecond pulsar J0337+1715 was discovered recently by a joint American-European collaboration led by Scott Ransom from National Radio Astronomy Observatory (USA). The system is located in the constellation of Taurus at a distance of about 4000 light-years. It is in the Galactic disk, and not inside a globular cluster. Therefore, its existence cannot be explained simply as a result of dynamical encounter events in a dense stellar environment. During the last 6 months, Thomas Tauris and Ed van den Heuvel have developed a semi-analytical model to explain its existence. One of the key results obtained from their investigation is that the observed parameters reflect that both white dwarfs were indeed produced in the present system.

Triple systems often become dynamically unstable during their evolution leading to expulsion of one of the three stars. A major challenge was to find a solution that remained dynamically stable throughout the entire evolution, including the stage of the supernova explosion. "An interesting result of our new investigation is that the system evolved through a common envelope stage where both white dwarf progenitor stars were dragged into the envelope of the massive star due to frictional forces, causing their orbits to shrink by a large factor, thereby enabling survival of its subsequent explosion", says Ed van den Heuvel.

"Actually, we can apply several tests of stellar evolution with this new system and also make predictions about its 3-dimensional velocity which can be measured within a few years", concludes Thomas Tauris. "This will allow us to constrain the mass of the exploding star."

--------------------

This work has profited from a recent effort to bridge the Fundamental Physics in Radio Astronomy group at the Max-Planck-Institut für Radioastronomie (MPIfR), led by Michael Kramer, with the Stellar Physics group at the Argelander-Institut für Astronomie (AIfA) at University of Bonn, led by Norbert Langer. Michael Kramer and his colleagues are using the 100-m Effelsberg Radio Telescope to participate in several ongoing searches and discoveries of millisecond pulsars, while the stellar physicists at AIfA are modelling their formation and evolution.

Thomas Tauris has been working at the AIfA and MPIfR as a visiting research professor since 2010. Some of his recent work on the recycling of millisecond pulsars has been published jointly with Norbert Langer, Michael Kramer and other colleagues in Bonn. Together they host twice per year an international one-day workshop in Bonn, called Formation and Evolution of Neutron stars.

Original Paper:

Formation of the Galactic Millisecond Pulsar Triple System PSR J0337+1715 - a Neutron Star with Two Orbiting White Dwarfs , T. M. Tauris & E. P. J. van den Heuvel, 2014, Astrophysical Journal Letters, scheduled for online publication on January 06, 2014.

Pulsar Discovery Paper:

A millisecond pulsar in a stellar triple system, S.M. Ransom et al., 2014, Nature Online Publishing, doi:10.1038/nature12917.

http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12917.html

Local Contact:

Dr. Thomas M. Tauris
Argelander-Institut für Astronomie der Univ. Bonn
& Max-Planck-Institut für Radioastronomie
Phone: +49(0)228-73-3660
E-mail: tauris@astro.uni-bonn.de
Prof. Dr. Michael Kramer,
Director and Head of Research Group "Fundamental Physics in Radio Astronomy",
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49(0)228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Max-Planck-Institut für Radioastronomie.
Press and Public Outreach,
Phone: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de
Co-author Contact:
Prof. Dr. Ed van den Heuvel
Astronomical Institute `Anton Pannekoek´
Universiteit van Amsterdam
Phone: +31 (0) 20 525 7493
E-mail: E.P.J.vandenHeuvel@uva.nl

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de
http://www.mpifr-bonn.mpg.de/pressreleases/2014/1

More articles from Physics and Astronomy:

nachricht A New Litmus Test for Chaos?
29.07.2015 | American Institute of Physics (AIP)

nachricht First detection of lithium from an exploding star
29.07.2015 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>