Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An exoplanet from another galaxy

Astronomers have discovered the first exoplanet that originated in another galaxy. The planet's host star belongs to a dwarf galaxy which was swallowed up by our home galaxy, the Milky Way, billions of years ago. Remarkably, the Jupiter-like planet orbits a star nearing the end of its life. It appears to have survived the star's "Red giant" stage, which offers a tantalizing glimpse of one possible fate of our own Solar System in the distance future. The results are being published on November 18 in Science Express.

Over the last 15 years, astronomers have detected nearly 500 exoplanets orbiting ordinary stars in our cosmic neighborhood. Now, for the first time, astronomers have detected an exoplanet whose origin appears to lie outside our own galaxy.

An exoplanet from another galaxy (right) and its star (left): Artist\'s impression of the yellowish star HIP 13044 and, on the bottom right, its planet HIP 13044 b. HIP 13044 is part of a stellar stream, a remnant of a dwarf galaxy that was swallowed by the Milky Way galaxy billions of years ago. Credit: ESO/L. Calçada

The planet, which has been designated HIP 13044 b, has a minimum mass of 1.25 times the mass of Jupiter. The star system is located about 2000 light-years from Earth in the southern constellation Fornax ("the chemical furnace").

The planet was discovered with the radial velocity method, which measures tiny wobbles of a star caused by a planet's gravitational pull. HIP 13044's wobbles were detected with the high-resolution spectrograph FEROS at the 2.2 m MPG/ESO telescope at ESO's La Silla observatory in Chile.

The planet and its host star appear to have originated in a dwarf galaxy that was swallowed by the Milky Way galaxy between six and nine billion years ago. Such galactic cannibalism is an ordinary occurrence in galactic evolution. Typically, remnants of swallowed-up dwarf galaxies can be detected as ribbon-like arrangements of stars known as "stellar streams". In this case, HIP 13044 is part of the so-called "Helmi stream".

"This is an exciting discovery," says Rainer Klement of the Max Planck Institute for Astronomy (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach."[1]

The newly discovered system has a number of unusual properties. "We found HIP 13044 b as part of a systematic search for exoplanets around stars that are nearing the end of their life," says MPIA's Johny Setiawan, who led the research. While the host star HIP 13044 was probably rather similar to our own Sun earlier on, it has since gone through the "Red Giant" phase, in which a star cools and expands to hundreds of times the radius of the Sun. It has now settled down into another quiet phase powered by the nuclear fusion of Helium, which is expected to last a few million years in total.

The fact that the exoplanet survived the red giant stage provides an intriguing glimpse of one possible fate of our own planetary system: our Sun is expected to become a Red Giant in around five billion years. Setiawan and his colleagues hypothesize that HIP 13044 b's current close orbit – its present average distance to its host star amounts to a mere 12 per cent of the distance between the Sun and the Earth, with an orbital period of only 16.2 days – was initially much larger, and that the planet migrated inwards during the star's Red Giant phase.

There is some evidence that some closer-in planets did likewise, and did not survive: "HIP 13044 is rotating relatively quickly for a star of this particular type," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the Red Giant phase, which would make the star spin more quickly." HIP 13044 b's survival might be in jeopardy, though. In the next stage of its evolution, the star is headed for renewed expansion, and may engulf the planet.

With only this single data point, it is impossible to tell how common this particular evolution is. More definite conclusions – and an understanding of how much HIP 13044 tells us about our own planetary system's future –will only be possible once significantly more planets orbiting similar stars – stars that have reached the later stages of stellar evolution - have been found. This is the aim of an ongoing search by Setiawan and his colleagues.

One final puzzle is that the new planet's host star HIP 13044 appears to contain very few elements heavier than hydrogen and helium (in technical terms, it is "extremely metal-poor") – fewer than any other star with planets. "It is a puzzle for the widely accepted model of planet formation how such a star, which contains hardly any heavy elements at all, could have formed a planet," adds Setiawan.

Contact information

Dr. Johny Setiawan (Lead author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 326
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
Background information
The work described in this release is slated for publication in the journal Science. An electronic version will be published in advance on November 18, 2010 in Science Express as Setiawan et al., "A Giant Planet Around a Metal-poor Star of Extragalactic Origin". The members of the team are Johny Setiawan, Rainer J. Klement, Thomas Henning, Hans-Walter Rix, Boyke Rochau and Tim Schulze-Hartung (all from the Max Planck Institute for Astronomy) and Jens Rodmann (European Space Agency).


[1] Because of the great distances involved, current telescopes are not nearly powerful enough to systematically observe exoplanets in other galaxies. There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events: During such events, a star A passing in front of an even more distant star B leads to a subtle, but detectable "flash". Some features of that flash indicate that the star A is accompanied by a planet. However, this method relies singular events – the chance alignment of a distant light source, planetary system, and observers on Earth – making it inherently unlikely that such a detection of an extragalactic planet can ever be confirmed.

Dr. Markus Pössel | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>