Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An exoplanet from another galaxy

19.11.2010
Astronomers have discovered the first exoplanet that originated in another galaxy. The planet's host star belongs to a dwarf galaxy which was swallowed up by our home galaxy, the Milky Way, billions of years ago. Remarkably, the Jupiter-like planet orbits a star nearing the end of its life. It appears to have survived the star's "Red giant" stage, which offers a tantalizing glimpse of one possible fate of our own Solar System in the distance future. The results are being published on November 18 in Science Express.

Over the last 15 years, astronomers have detected nearly 500 exoplanets orbiting ordinary stars in our cosmic neighborhood. Now, for the first time, astronomers have detected an exoplanet whose origin appears to lie outside our own galaxy.


An exoplanet from another galaxy (right) and its star (left): Artist\'s impression of the yellowish star HIP 13044 and, on the bottom right, its planet HIP 13044 b. HIP 13044 is part of a stellar stream, a remnant of a dwarf galaxy that was swallowed by the Milky Way galaxy billions of years ago. Credit: ESO/L. Calçada

The planet, which has been designated HIP 13044 b, has a minimum mass of 1.25 times the mass of Jupiter. The star system is located about 2000 light-years from Earth in the southern constellation Fornax ("the chemical furnace").

The planet was discovered with the radial velocity method, which measures tiny wobbles of a star caused by a planet's gravitational pull. HIP 13044's wobbles were detected with the high-resolution spectrograph FEROS at the 2.2 m MPG/ESO telescope at ESO's La Silla observatory in Chile.

The planet and its host star appear to have originated in a dwarf galaxy that was swallowed by the Milky Way galaxy between six and nine billion years ago. Such galactic cannibalism is an ordinary occurrence in galactic evolution. Typically, remnants of swallowed-up dwarf galaxies can be detected as ribbon-like arrangements of stars known as "stellar streams". In this case, HIP 13044 is part of the so-called "Helmi stream".

"This is an exciting discovery," says Rainer Klement of the Max Planck Institute for Astronomy (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach."[1]

The newly discovered system has a number of unusual properties. "We found HIP 13044 b as part of a systematic search for exoplanets around stars that are nearing the end of their life," says MPIA's Johny Setiawan, who led the research. While the host star HIP 13044 was probably rather similar to our own Sun earlier on, it has since gone through the "Red Giant" phase, in which a star cools and expands to hundreds of times the radius of the Sun. It has now settled down into another quiet phase powered by the nuclear fusion of Helium, which is expected to last a few million years in total.

The fact that the exoplanet survived the red giant stage provides an intriguing glimpse of one possible fate of our own planetary system: our Sun is expected to become a Red Giant in around five billion years. Setiawan and his colleagues hypothesize that HIP 13044 b's current close orbit – its present average distance to its host star amounts to a mere 12 per cent of the distance between the Sun and the Earth, with an orbital period of only 16.2 days – was initially much larger, and that the planet migrated inwards during the star's Red Giant phase.

There is some evidence that some closer-in planets did likewise, and did not survive: "HIP 13044 is rotating relatively quickly for a star of this particular type," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the Red Giant phase, which would make the star spin more quickly." HIP 13044 b's survival might be in jeopardy, though. In the next stage of its evolution, the star is headed for renewed expansion, and may engulf the planet.

With only this single data point, it is impossible to tell how common this particular evolution is. More definite conclusions – and an understanding of how much HIP 13044 tells us about our own planetary system's future –will only be possible once significantly more planets orbiting similar stars – stars that have reached the later stages of stellar evolution - have been found. This is the aim of an ongoing search by Setiawan and his colleagues.

One final puzzle is that the new planet's host star HIP 13044 appears to contain very few elements heavier than hydrogen and helium (in technical terms, it is "extremely metal-poor") – fewer than any other star with planets. "It is a puzzle for the widely accepted model of planet formation how such a star, which contains hardly any heavy elements at all, could have formed a planet," adds Setiawan.

Contact information

Dr. Johny Setiawan (Lead author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 326
E-mail: setiawan@mpia.de
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
E-mail: pr@mpia.de
Background information
The work described in this release is slated for publication in the journal Science. An electronic version will be published in advance on November 18, 2010 in Science Express as Setiawan et al., "A Giant Planet Around a Metal-poor Star of Extragalactic Origin". The members of the team are Johny Setiawan, Rainer J. Klement, Thomas Henning, Hans-Walter Rix, Boyke Rochau and Tim Schulze-Hartung (all from the Max Planck Institute for Astronomy) and Jens Rodmann (European Space Agency).

Endnote

[1] Because of the great distances involved, current telescopes are not nearly powerful enough to systematically observe exoplanets in other galaxies. There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events: During such events, a star A passing in front of an even more distant star B leads to a subtle, but detectable "flash". Some features of that flash indicate that the star A is accompanied by a planet. However, this method relies singular events – the chance alignment of a distant light source, planetary system, and observers on Earth – making it inherently unlikely that such a detection of an extragalactic planet can ever be confirmed.

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.eso.org/public/news/eso1045/
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>