Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An exoplanet from another galaxy

19.11.2010
Astronomers have discovered the first exoplanet that originated in another galaxy. The planet's host star belongs to a dwarf galaxy which was swallowed up by our home galaxy, the Milky Way, billions of years ago. Remarkably, the Jupiter-like planet orbits a star nearing the end of its life. It appears to have survived the star's "Red giant" stage, which offers a tantalizing glimpse of one possible fate of our own Solar System in the distance future. The results are being published on November 18 in Science Express.

Over the last 15 years, astronomers have detected nearly 500 exoplanets orbiting ordinary stars in our cosmic neighborhood. Now, for the first time, astronomers have detected an exoplanet whose origin appears to lie outside our own galaxy.


An exoplanet from another galaxy (right) and its star (left): Artist\'s impression of the yellowish star HIP 13044 and, on the bottom right, its planet HIP 13044 b. HIP 13044 is part of a stellar stream, a remnant of a dwarf galaxy that was swallowed by the Milky Way galaxy billions of years ago. Credit: ESO/L. Calçada

The planet, which has been designated HIP 13044 b, has a minimum mass of 1.25 times the mass of Jupiter. The star system is located about 2000 light-years from Earth in the southern constellation Fornax ("the chemical furnace").

The planet was discovered with the radial velocity method, which measures tiny wobbles of a star caused by a planet's gravitational pull. HIP 13044's wobbles were detected with the high-resolution spectrograph FEROS at the 2.2 m MPG/ESO telescope at ESO's La Silla observatory in Chile.

The planet and its host star appear to have originated in a dwarf galaxy that was swallowed by the Milky Way galaxy between six and nine billion years ago. Such galactic cannibalism is an ordinary occurrence in galactic evolution. Typically, remnants of swallowed-up dwarf galaxies can be detected as ribbon-like arrangements of stars known as "stellar streams". In this case, HIP 13044 is part of the so-called "Helmi stream".

"This is an exciting discovery," says Rainer Klement of the Max Planck Institute for Astronomy (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach."[1]

The newly discovered system has a number of unusual properties. "We found HIP 13044 b as part of a systematic search for exoplanets around stars that are nearing the end of their life," says MPIA's Johny Setiawan, who led the research. While the host star HIP 13044 was probably rather similar to our own Sun earlier on, it has since gone through the "Red Giant" phase, in which a star cools and expands to hundreds of times the radius of the Sun. It has now settled down into another quiet phase powered by the nuclear fusion of Helium, which is expected to last a few million years in total.

The fact that the exoplanet survived the red giant stage provides an intriguing glimpse of one possible fate of our own planetary system: our Sun is expected to become a Red Giant in around five billion years. Setiawan and his colleagues hypothesize that HIP 13044 b's current close orbit – its present average distance to its host star amounts to a mere 12 per cent of the distance between the Sun and the Earth, with an orbital period of only 16.2 days – was initially much larger, and that the planet migrated inwards during the star's Red Giant phase.

There is some evidence that some closer-in planets did likewise, and did not survive: "HIP 13044 is rotating relatively quickly for a star of this particular type," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the Red Giant phase, which would make the star spin more quickly." HIP 13044 b's survival might be in jeopardy, though. In the next stage of its evolution, the star is headed for renewed expansion, and may engulf the planet.

With only this single data point, it is impossible to tell how common this particular evolution is. More definite conclusions – and an understanding of how much HIP 13044 tells us about our own planetary system's future –will only be possible once significantly more planets orbiting similar stars – stars that have reached the later stages of stellar evolution - have been found. This is the aim of an ongoing search by Setiawan and his colleagues.

One final puzzle is that the new planet's host star HIP 13044 appears to contain very few elements heavier than hydrogen and helium (in technical terms, it is "extremely metal-poor") – fewer than any other star with planets. "It is a puzzle for the widely accepted model of planet formation how such a star, which contains hardly any heavy elements at all, could have formed a planet," adds Setiawan.

Contact information

Dr. Johny Setiawan (Lead author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 326
E-mail: setiawan@mpia.de
Dr. Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
E-mail: pr@mpia.de
Background information
The work described in this release is slated for publication in the journal Science. An electronic version will be published in advance on November 18, 2010 in Science Express as Setiawan et al., "A Giant Planet Around a Metal-poor Star of Extragalactic Origin". The members of the team are Johny Setiawan, Rainer J. Klement, Thomas Henning, Hans-Walter Rix, Boyke Rochau and Tim Schulze-Hartung (all from the Max Planck Institute for Astronomy) and Jens Rodmann (European Space Agency).

Endnote

[1] Because of the great distances involved, current telescopes are not nearly powerful enough to systematically observe exoplanets in other galaxies. There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events: During such events, a star A passing in front of an even more distant star B leads to a subtle, but detectable "flash". Some features of that flash indicate that the star A is accompanied by a planet. However, this method relies singular events – the chance alignment of a distant light source, planetary system, and observers on Earth – making it inherently unlikely that such a detection of an extragalactic planet can ever be confirmed.

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.eso.org/public/news/eso1045/
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>