Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exocomets may be as common as exoplanets

08.01.2013
Comets trailing wispy tails across the night sky are a beautiful byproduct of our solar system’s formation, icy leftovers from 4.6 billion years ago when the planets coalesced from rocky rubble.
The discovery by astronomers at the University of California, Berkeley, and Clarion University in Pennsylvania of six likely comets around distant stars suggests that comets – dubbed “exocomets” – are just as common in other stellar systems with planets.

Artistic depiction of dust and comets around the young star Beta Pictoris as seen from the outer edge of its disk. NASA image by Lynette Cook.

Though only one of the 10 stars now thought to harbor comets is known to harbor planets, the fact that all these stars have massive surrounding disks of gas and dust ‑ a signature of exoplanets – makes it highly likely they all do, said Barry Welsh, a research astronomer at UC Berkeley’s Space Sciences Laboratory.

“This is sort of the missing link in current planetary formation studies,” Welsh said. “We see dust disks – presumably the primordial planet-forming material – around a whole load of stars, and we see planets, but we don’t see much of the stuff in between: the asteroid-like planetesimals and the comets. Now, I think we have nailed it. These exocomets are more common and easier to detect than people previously thought.”

Welsh will present the findings on Monday, Jan. 7, during a meeting of the American Astronomical Society in Long Beach, Calif. Three of the new exocomets were reported in the Oct. 2012 issue of the journal Publications of the Astronomical Society of the Pacific by Welsh and colleague Sharon L. Montgomery of the Department of Physics at Clarion University.

Welsh also will participate in a media briefing on Tuesday, Jan. 8, at 2:30 p.m. PST in Room 204 on Level 2 of the Long Beach Convention Center.

Welsh summarized the current theory of planet formation as “interstellar dust under the influence of gravity becomes blobs, and the blobs grow into rocks, the rocks coalesce and become bigger things – planetesimals and comets – and finally, you get planets.”

Many stars are known to be surrounded by disks of gas and dust, and one of the closest, beta-Pictoris (â-Pic), was reported to have comets in 1987. In 2009, astronomers found a large planet around â-Pic about 10 times larger than Jupiter. Three other stars – one discovered by Welsh in 1998 – were subsequently found to have comets.

“But then, people just lost interest. They decided that exocomets were a done deal, and everybody switched to the more exciting thing, exoplanets,” Welsh said. “But I came back to it last year and thought, ‘Four exocomets is not all that many compared to the couple of thousand exoplanets known – perhaps I can improve on that.’”

Detecting comets may sound difficult – after all, the snowballs are typically only 5-20 kilometers (3-13 miles) in diameter. But Welsh said that once comets are knocked out of their parking orbit in the outer reaches of a stellar system and fall toward a star, they heat up and evaporate. The evaporating comet, which is what we see with comets such as Halley and next year’s highly anticipated Comet ISON, creates a brief, telltale absorption line in the spectrum of a star.

The six new exocomet systems were discovered during three five-night-long observing runs between May 2010 and November 2012 using the 2.1-meter telescope of the McDonald Observatory in Texas. The telescope’s high resolution spectrograph revealed weak absorption features that were found to vary from night to night, an outcome that Welsh and Montgomery attributed to large clouds of gas emanating from the nuclei of comets as they neared their central stars.

All of the newly discovered exocomets – 49 Ceti (HD 9672), 5 Vulpeculae (HD 182919), 2 Andromedae, HD 21620, HD 42111 and HD 110411 – are around very young type A stars, which are about 5 million years old, because Welsh’s detection technique works best with them. With a higher resolution spectrograph, he might be able to detect comets around the older and yellower G and F stars around which most exoplanets have been found.

Nevertheless, all evidence suggests that these dusty A stars should have planets, and planets are the only thing that could knock a comet out of its orbit and make it fall toward its star.

“If it quacks, waddles and has feathers, then it’s probably a duck,” he said.

The work was supported by the National Aeronautics and Space Administration.

RELATED INFORMATION
UC Berkeley astronomers find comets around two nearby stars, indicating the likelihood of planets forming (June 11, 1998 press release)

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Astronomical Beach COMET Clarion Exocomets Space gas and dust nearby star

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>