Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exciting breakthrough in 2-D lasers

21.10.2015

Berkeley Lab researchers demonstrate atomically thin excitonic laser

An important step towards next-generation ultra-compact photonic and optoelectronic devices has been taken with the realization of a two-dimensional excitonic laser. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) embedded a monolayer of tungsten disulfide into a special microdisk resonator to achieve bright excitonic lasing at visible light wavelengths.


In this 2-D excitonic laser, the sandwiching of a monolayer of tungsten disulfide between the two dielectric layers of a microdisk resonator creates the potential for ultralow-threshold lasing.

Credit: Xiang Zhang, Berkeley Lab

"Our observation of high-quality excitonic lasing from a single molecular layer of tungsten disulfide marks a major step towards two-dimensional on-chip optoelectronics for high-performance optical communication and computing applications," says Xiang Zhang, director of Berkeley Lab's Materials Sciences Division and the leader of this study.

Zhang, who also holds the Ernest S. Kuh Endowed Chair at the University of California (UC) Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley (Kavli ENSI), is the corresponding author of a paper describing this research in the journal Nature Photonics. The paper is titled "Monolayer excitonic laser." The lead authors are Yu Ye and Zi Jing Wong, members of Zhang's research group, plus Xiufang Lu, Xingjie Ni, Hanyu Zhu, Xianhui Chen and Yuan Wang.

Among the most talked about class of materials in the world of nanotechnology today are two-dimensional (2D) transition metal dichalcogenides (TMDCs). These 2D semiconductors offer superior energy efficiency and conduct electrons much faster than silicon.

Furthermore, unlike graphene, the other highly touted 2D semiconductor, TMDCs have natural bandgaps that allow their electrical conductance to be switched "on and off," making them more device-ready than graphene. Tungsten disulfide in a single molecular layer is widely regarded as one of the most promising TMDCs for photonic and optoelectronic applications. However, until now, coherent light emission, or lasing, considered essential for "on-chip" applications, had not been realized in this material.

"TMDCs have shown exceptionally strong light-matter interactions that result in extraordinary excitonic properties," Zhang says. "These properties arise from the quantum confinement and crystal symmetry effect on the electronic band structure as the material is thinned down to a monolayer. However, for 2D lasing, the design and fabrication of microcavities that provide a high optical mode confinement factor and high quality, or Q, factor is required."

In a previous study, Zhang and his research group had developed a "whispering gallery microcavity" for plasmons, electromagnetic waves that roll across the surfaces of metals. Based on the principle behind whispering galleries - where words spoken softly beneath a domed ceiling can be clearly heard on the opposite side of the chamber - this micro-sized metallic cavity for plasmons strengthened and greatly enhanced the Q factor of light emissions. In this new study, Zhang and his group were able to adapt this microcavity technology from plasmons to excitons - photoexcited electrons/hole pairs within a single layer of molecules.

"For our excitonic laser, we dropped the metal coating and designed a microdisk resonator that supports a dielectric whispering gallery mode rather than a plasmonic mode, and gives us a high Q factor with low power consumption," says co-lead author Ye. "When a monolayer of tungsten disulfide - serving as the gain medium - is sandwiched between the two dielectric layers of the resonator, we create the potential for ultralow-threshold lasing."

In addition to its photonic and optoelectronic applications, this 2D excitonic laser technology also has potential for valleytronic applications, in which digital information is encoded in the spin and momentum of an electron moving through a crystal lattice as a wave with energy peaks and valleys. Valleytronics is seen as an alternative to spintronics for quantum computing.

"TMDCs such as tungsten disulfide provide unique access to spin and valley degrees of freedom," says co-lead author Wong. "Selective excitation of the carrier population in one set of two distinct valleys can further lead to lasing in the confined valley, paving the way for easily-tunable circularly polarized lasers. The demand for circularly polarized coherent light sources is high, ranging from three-dimensional displays to effective spin sources in spintronics, and information carriers in quantum computation."

###

This research was supported by the United States Air Force Office of Scientific Research and by the DOE Office of Science through the Light-Material Interaction in Energy Conversion Energy Frontier Research Center.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

Further reports about: disulfide graphene lasers monolayer optoelectronic properties spintronics

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>