Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exciting breakthrough in 2-D lasers

21.10.2015

Berkeley Lab researchers demonstrate atomically thin excitonic laser

An important step towards next-generation ultra-compact photonic and optoelectronic devices has been taken with the realization of a two-dimensional excitonic laser. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) embedded a monolayer of tungsten disulfide into a special microdisk resonator to achieve bright excitonic lasing at visible light wavelengths.


In this 2-D excitonic laser, the sandwiching of a monolayer of tungsten disulfide between the two dielectric layers of a microdisk resonator creates the potential for ultralow-threshold lasing.

Credit: Xiang Zhang, Berkeley Lab

"Our observation of high-quality excitonic lasing from a single molecular layer of tungsten disulfide marks a major step towards two-dimensional on-chip optoelectronics for high-performance optical communication and computing applications," says Xiang Zhang, director of Berkeley Lab's Materials Sciences Division and the leader of this study.

Zhang, who also holds the Ernest S. Kuh Endowed Chair at the University of California (UC) Berkeley and is a member of the Kavli Energy NanoSciences Institute at Berkeley (Kavli ENSI), is the corresponding author of a paper describing this research in the journal Nature Photonics. The paper is titled "Monolayer excitonic laser." The lead authors are Yu Ye and Zi Jing Wong, members of Zhang's research group, plus Xiufang Lu, Xingjie Ni, Hanyu Zhu, Xianhui Chen and Yuan Wang.

Among the most talked about class of materials in the world of nanotechnology today are two-dimensional (2D) transition metal dichalcogenides (TMDCs). These 2D semiconductors offer superior energy efficiency and conduct electrons much faster than silicon.

Furthermore, unlike graphene, the other highly touted 2D semiconductor, TMDCs have natural bandgaps that allow their electrical conductance to be switched "on and off," making them more device-ready than graphene. Tungsten disulfide in a single molecular layer is widely regarded as one of the most promising TMDCs for photonic and optoelectronic applications. However, until now, coherent light emission, or lasing, considered essential for "on-chip" applications, had not been realized in this material.

"TMDCs have shown exceptionally strong light-matter interactions that result in extraordinary excitonic properties," Zhang says. "These properties arise from the quantum confinement and crystal symmetry effect on the electronic band structure as the material is thinned down to a monolayer. However, for 2D lasing, the design and fabrication of microcavities that provide a high optical mode confinement factor and high quality, or Q, factor is required."

In a previous study, Zhang and his research group had developed a "whispering gallery microcavity" for plasmons, electromagnetic waves that roll across the surfaces of metals. Based on the principle behind whispering galleries - where words spoken softly beneath a domed ceiling can be clearly heard on the opposite side of the chamber - this micro-sized metallic cavity for plasmons strengthened and greatly enhanced the Q factor of light emissions. In this new study, Zhang and his group were able to adapt this microcavity technology from plasmons to excitons - photoexcited electrons/hole pairs within a single layer of molecules.

"For our excitonic laser, we dropped the metal coating and designed a microdisk resonator that supports a dielectric whispering gallery mode rather than a plasmonic mode, and gives us a high Q factor with low power consumption," says co-lead author Ye. "When a monolayer of tungsten disulfide - serving as the gain medium - is sandwiched between the two dielectric layers of the resonator, we create the potential for ultralow-threshold lasing."

In addition to its photonic and optoelectronic applications, this 2D excitonic laser technology also has potential for valleytronic applications, in which digital information is encoded in the spin and momentum of an electron moving through a crystal lattice as a wave with energy peaks and valleys. Valleytronics is seen as an alternative to spintronics for quantum computing.

"TMDCs such as tungsten disulfide provide unique access to spin and valley degrees of freedom," says co-lead author Wong. "Selective excitation of the carrier population in one set of two distinct valleys can further lead to lasing in the confined valley, paving the way for easily-tunable circularly polarized lasers. The demand for circularly polarized coherent light sources is high, ranging from three-dimensional displays to effective spin sources in spintronics, and information carriers in quantum computation."

###

This research was supported by the United States Air Force Office of Scientific Research and by the DOE Office of Science through the Light-Material Interaction in Energy Conversion Energy Frontier Research Center.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

Further reports about: disulfide graphene lasers monolayer optoelectronic properties spintronics

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>