Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence further suggests extra-terrestrial origin of quasicrystals

10.08.2012
Results from an expedition to far eastern Russia that set out to find the origin of naturally occurring quasicrystals have provided convincing evidence that they arrived on Earth from outer space.

Writing in IOP Publishing's journal Reports on Progress in Physics, Paul J Steinhardt and Luca Bindi reveal that new, naturally occurring quasicrystal samples have been found in an environment that does not have the extreme terrestrial conditions needed to produce them, therefore strengthening the case that they were brought to Earth by a meteorite.

Furthermore, their findings reveal that the samples of quasicrystals were brought to the area during the last glacial period, suggesting the meteorite was most likely to have hit Earth around 15 000 years ago.

"The fact that the expedition found more material in the same location that we had spent years to track down is a tremendous confirmation of the whole story, which is significant since the meteorite is of great interest because of its extraordinary age and contents," said Steinhardt.

In their report, Steinhardt and Bindi describe the expedition in which ten scientists, two drivers and a cook travelled 230 km into the Koryak Mountains of far eastern Russia to pan one and a half tons of sediment by hand, and survey local streams and mountains.

The group of researchers were on the look-out for naturally occurring quasicrystals – a unique class of solids that were first synthesized in the laboratory by Israeli scientist Dan Shechtman in 1982. He was awarded the Nobel Prize for Chemistry in 2011 for this discovery.

The concept of quasicrystals was first introduced by Steinhardt and his student Dov Levine. Until their work, it had been believed that all solids, synthetic or natural, form ordinary crystals – materials whose entire structure is made of a single-type cluster of atoms that repeat at regular intervals, joining together in much the same way as identical tiles in bathroom tiling.

It was also thought that crystals could only have two-, three-, four- and six-fold symmetries; however, Steinhardt and Levine found a new theoretical possibility, which they dubbed quasicrystals. A quasicrystal has two or more types of clusters that repeat at different intervals with an irrational ratio, which allows all the symmetries that were thought to be forbidden, such as five-fold symmetry, to be possible.

Since their discovery in the laboratory, researchers have created over one hundred artificial quasicrystals that have been used in a variety of applications, from non-stick frying pans and cutlery to ball bearings and razor blades.

Only one natural quasicrystal has been previously documented: a sample in the Museum of Natural History in Florence, Italy, that was located and identified by the two co-authors and their collaborators in 2009. They found the sample to have the symmetry of a soccer ball, with six axes of five-fold symmetry forbidden to ordinary crystals. This triggered a remarkable investigation to find the place where the sample came from, which, as Steinhardt states, involved secret diaries, smugglers, gold prospectors and bears.

Eventually, the researchers found the person, Valery Kryachko, who had removed the sample from a remote area of Chukotka in the Russian mountains back in 1979.

In the summer of 2010, the researchers' experiments indicated that the sample was meteoritic and had come from not just any type of meteorite, but a CV3 carbonaceous chondrite – a 4.5 billion-year-old meteorite formed at the beginning of the solar system.

"Now there was real motivation to turn this fantasy trip into a reality. It was a long shot, but if we could find even one sample there, it would prove the bizarre story we had put together beyond any shadow of doubt and provide new sources of material for studying this very strange meteorite that formed at the beginning of the solar system," Steinhardt continued.

Now that Steinhardt, Bindi and their expedition team have collected even more samples from the original site in Chukotka, there are a number of questions that can now be answered with further investigation.

"What does nature know that we don't? How did the quasicrystal form so perfectly inside a complex meteorite when we normally have to work hard in the laboratory to get anything as perfect? What other new phases can we find in this meteorite and what can they tell us about the early solar system?

"At the moment, we are at the tip of the iceberg," said Steinhardt.

Notes to Editors

Contact

1. For further information or a full draft of the journal paper, contact IOP Press Officer Michael Bishop:
Email: Michael.bishop@iop.org
Phone: 01179 301032
In search of natural quasicrystals
2. The published version of the paper "In search of natural quasicrystals" (Paul J Steinhardt and Luca Bindi 2012 Rep. Prog. Phys. 75 092601) will be freely available from Friday 10 August

Reports on Progress in Physics

3. Reports on Progress in Physics publishes review articles covering all branches of physics, written by invited authors who are worldwide experts in their field.

IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://publishing.iop.org/.

The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000, comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>