Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Evidence Strengthens Case That Scientists Have Discovered a Higgs Boson

The following news release is being issued jointly by the U.S. Department of Energy's Brookhaven National Laboratory and Fermi National Accelerator Laboratory on behalf of the U.S. LHC organization (

It describes the latest results from two experiments at the Large Hadron Collider (LHC) at CERN that are searching for signs of the Higgs boson, a subatomic particle postulated by the Standard Model of particle physics as the source of mass for other particles.

Image courtesy CERN.

A typical candidate event including two high-energy photons whose energy (depicted by red towers) is measured in the CMS electromagnetic calorimeter. The yellow lines are the measured tracks of other particles produced in the collision. The pale blue volume shows the CMS crystal calorimeter barrel.

For more information about Brookhaven's role in the Higgs search and work on the LHC's ATLAS experiment see the Brookhaven ATLAS website ( and this press release (

Brookhaven Lab Media Contact:
Peter Genzer,, (631) 344-3174
New evidence strengthens case that scientists have discovered a Higgs boson
The new particle discovered at experiments at the Large Hadron Collider last summer is looking more like a Higgs boson than ever before, according to results announced today.

On July 4, physicists on the CMS and ATLAS experiments announced the discovery of a particle with a close resemblance to a Higgs, a particle thought to give mass to other elementary particles. The discovery of such a particle could finish a job almost five decades in the making: It could confirm the last remaining piece of the Standard Model of particle physics, a menu of the smallest particles and forces that make up the universe and how they interact.

Although scientists will need to analyze substantially more data before they can conclusively declare the new particle is the Standard Model Higgs boson, results announced today at the Rencontres de Moriond conference in La Thuile, Italy, bolster scientists' confidence that the particle they discovered is the Standard Model Higgs.

"Clear evidence that the new particle is the Standard Model Higgs boson still would not complete our understanding of the universe," said Patty McBride, head of the CMS Center at Fermilab. "We still wouldn't understand why gravity is so weak and we would have the mysteries of dark matter to confront. But it is satisfying to come a step closer to validating a 48-year-old theory."

Researchers look for the Higgs boson at the LHC by accelerating protons to high energies and crashing them into one another. The energy of those colliding protons can briefly convert into mass, bringing into being heavier particles such as the Higgs bosons. The heavy particles are unstable and decay almost immediately into pairs of less massive particles.

Scientists have specific predictions for how often a Standard Model Higgs boson of a certain mass will decay into different patterns of particles. The latest results indicate that the new particle is sticking to the Standard Model's script.

The ATLAS and CMS collaborations have analyzed two and a half times more data than was available for the discovery announcement in July, and, in their preliminary results, they find that the new particle is looking more and more like a Higgs boson.

"When we discovered the particle, we knew we found something significant," ATLAS scientist and New York University professor Kyle Cranmer said. "Now, we're just trying to establish the properties."

The analysis included the data from about 500 trillion proton-proton collisions collected in 2011 and from about 1,500 trillion collisions in 2012. The LHC stopped operation on Feb. 16, for two years of maintenance and upgrades, but researchers will continue to study the data collected before the shutdown.

Hundreds of scientists and students from American institutions have played important roles in the search for the Higgs at the LHC. Fermi National Accelerator Laboratory and Brookhaven National Laboratory host the U.S. contingents of the CMS and ATLAS experiments, respectively. More than 1,700 people from U.S. institutions-including 89 American universities and seven U.S. Department of Energy (DOE) national laboratories-helped design, build and operate the LHC accelerator and its four particle detectors. The United States, through DOE's Office of Science and the National Science Foundation, provides support for research, detector operations, and upgrades at the LHC, as well as supplies computing for the ATLAS and CMS experiments.

The vast majority of U.S. scientists participate in the LHC experiments from their home institutions, remotely accessing and analyzing the data through high-capacity networks and grid computing. Working collaboratively, these international organizations are able to analyze an incredible amount of data.

After further analysis, scientists will be able to say whether this new particle is the Standard Model Higgs boson or something more surprising.


Information about the US participation in the LHC is available at Follow @USLHC on Twitter.

Fermilab is America's premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab's website ( and follow us on Twitter at @FermilabToday.

Brookhaven National Laboratory is operated and managed for DOE's Office of Science by Brookhaven Science Associates. Visit Brookhaven Lab's electronic newsroom ( for links, news archives, graphics, and more.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

The National Science Foundation focuses its LHC support on funding the activities of U.S. university scientists and students on the ATLAS, CMS and LHCb detectors, as well as promoting the development of advanced computing innovations essential to address the data challenges posed by the LHC. For more information, please visit

CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva, Switzerland. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel and Serbia are Associate Members in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

Fact sheets, images, graphics and videos

Illustration: Standard Model particles

Med res illustration (

High res illustration (

Photo: Remote Operations Center at Fermilab

Med res photo

High res photo (


What is a Higgs boson? (

How do we search for Higgs bosons? (

Fact sheet: Frequently Asked Questions about the Higgs boson (

Definitions of important terms (

Photos in the CERN photo archive (

Peter Genzer | Newswise
Further information:

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>



Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

More VideoLinks >>>