Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Evidence Strengthens Case That Scientists Have Discovered a Higgs Boson

18.03.2013
The following news release is being issued jointly by the U.S. Department of Energy's Brookhaven National Laboratory and Fermi National Accelerator Laboratory on behalf of the U.S. LHC organization (http://www.uslhc.us/).

It describes the latest results from two experiments at the Large Hadron Collider (LHC) at CERN that are searching for signs of the Higgs boson, a subatomic particle postulated by the Standard Model of particle physics as the source of mass for other particles.


Image courtesy CERN.

A typical candidate event including two high-energy photons whose energy (depicted by red towers) is measured in the CMS electromagnetic calorimeter. The yellow lines are the measured tracks of other particles produced in the collision. The pale blue volume shows the CMS crystal calorimeter barrel.

For more information about Brookhaven's role in the Higgs search and work on the LHC's ATLAS experiment see the Brookhaven ATLAS website (http://www.bnl.gov/atlas/) and this press release (http://www.bnl.gov/newsroom/news.php?a=11432).

Brookhaven Lab Media Contact:
Peter Genzer, genzer@bnl.gov, (631) 344-3174
New evidence strengthens case that scientists have discovered a Higgs boson
The new particle discovered at experiments at the Large Hadron Collider last summer is looking more like a Higgs boson than ever before, according to results announced today.

On July 4, physicists on the CMS and ATLAS experiments announced the discovery of a particle with a close resemblance to a Higgs, a particle thought to give mass to other elementary particles. The discovery of such a particle could finish a job almost five decades in the making: It could confirm the last remaining piece of the Standard Model of particle physics, a menu of the smallest particles and forces that make up the universe and how they interact.

Although scientists will need to analyze substantially more data before they can conclusively declare the new particle is the Standard Model Higgs boson, results announced today at the Rencontres de Moriond conference in La Thuile, Italy, bolster scientists' confidence that the particle they discovered is the Standard Model Higgs.

"Clear evidence that the new particle is the Standard Model Higgs boson still would not complete our understanding of the universe," said Patty McBride, head of the CMS Center at Fermilab. "We still wouldn't understand why gravity is so weak and we would have the mysteries of dark matter to confront. But it is satisfying to come a step closer to validating a 48-year-old theory."

Researchers look for the Higgs boson at the LHC by accelerating protons to high energies and crashing them into one another. The energy of those colliding protons can briefly convert into mass, bringing into being heavier particles such as the Higgs bosons. The heavy particles are unstable and decay almost immediately into pairs of less massive particles.

Scientists have specific predictions for how often a Standard Model Higgs boson of a certain mass will decay into different patterns of particles. The latest results indicate that the new particle is sticking to the Standard Model's script.

The ATLAS and CMS collaborations have analyzed two and a half times more data than was available for the discovery announcement in July, and, in their preliminary results, they find that the new particle is looking more and more like a Higgs boson.

"When we discovered the particle, we knew we found something significant," ATLAS scientist and New York University professor Kyle Cranmer said. "Now, we're just trying to establish the properties."

The analysis included the data from about 500 trillion proton-proton collisions collected in 2011 and from about 1,500 trillion collisions in 2012. The LHC stopped operation on Feb. 16, for two years of maintenance and upgrades, but researchers will continue to study the data collected before the shutdown.

Hundreds of scientists and students from American institutions have played important roles in the search for the Higgs at the LHC. Fermi National Accelerator Laboratory and Brookhaven National Laboratory host the U.S. contingents of the CMS and ATLAS experiments, respectively. More than 1,700 people from U.S. institutions-including 89 American universities and seven U.S. Department of Energy (DOE) national laboratories-helped design, build and operate the LHC accelerator and its four particle detectors. The United States, through DOE's Office of Science and the National Science Foundation, provides support for research, detector operations, and upgrades at the LHC, as well as supplies computing for the ATLAS and CMS experiments.

The vast majority of U.S. scientists participate in the LHC experiments from their home institutions, remotely accessing and analyzing the data through high-capacity networks and grid computing. Working collaboratively, these international organizations are able to analyze an incredible amount of data.

After further analysis, scientists will be able to say whether this new particle is the Standard Model Higgs boson or something more surprising.

Background

Information about the US participation in the LHC is available at http://www.uslhc.us. Follow @USLHC on Twitter.

Fermilab is America's premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab's website (http://www.fnal.gov/) and follow us on Twitter at @FermilabToday.

Brookhaven National Laboratory is operated and managed for DOE's Office of Science by Brookhaven Science Associates. Visit Brookhaven Lab's electronic newsroom (http://www.bnl.gov/newsroom/) for links, news archives, graphics, and more.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

The National Science Foundation focuses its LHC support on funding the activities of U.S. university scientists and students on the ATLAS, CMS and LHCb detectors, as well as promoting the development of advanced computing innovations essential to address the data challenges posed by the LHC. For more information, please visit http://www.nsf.gov/.

CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva, Switzerland. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel and Serbia are Associate Members in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

Fact sheets, images, graphics and videos

Illustration: Standard Model particles

Med res illustration (http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2005/0400/05-0440-01D.jpg)

High res illustration (http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2005/0400/05-0440-01D.hr.jpg)

Photo: Remote Operations Center at Fermilab

Med res photo http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2011/0000/11-0009-08D.jpg)

High res photo (http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2011/0000/11-0009-08D.hr.jpg)

Videos

What is a Higgs boson? (http://www.youtube.com/user/fermilab?v=RIg1Vh7uPyw&lr=1)

How do we search for Higgs bosons? (http://www.youtube.com/user/fermilab?v=1GrqMCz_vnA&lr=1)

Fact sheet: Frequently Asked Questions about the Higgs boson (http://www.fnal.gov/pub/presspass/press_releases/2012/files/Higgs_Boson_FAQ_July2012.pdf)

Definitions of important terms (http://www.symmetrymagazine.org/category/explain-it-in-60-seconds)

Photos in the CERN photo archive (https://cdsweb.cern.ch/search?cc=Press+Office+Photo+Selection&rg=100&of=hpm&p=internalnote%3A%22Higgs%22&sf=year&so=d)

Peter Genzer | Newswise
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>