Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of Macroscopic Quantum Tunneling Detected in Nanowires

29.05.2009
A team of researchers at the University of Illinois has demonstrated that, counter to classical Newtonian mechanics, an entire collection of superconducting electrons in an ultrathin superconducting wire is able to “tunnel” as a pack from a state with a higher electrical current to one with a notably lower current, providing more evidence of the phenomenon of macroscopic quantum tunneling.

Physics professors Alexey Bezryadin and Paul Goldbart led the team, with graduate student Mitrabhanu Sahu performing the bulk of the measurements. Their research was published on the Web site of the journal Nature Physics on May 17.

Quantum tunneling is the capability of a particle to inhabit regions of space that would normally be off-limits according to classical mechanics. This research observes a process called a quantum phase slip, whereby packs of roughly 100,000 electrons tunnel together from higher electrical current states to lower ones. The energy locked in the motion of the electrons as they phase slip is dissipated as heat, causing the nanowires to switch from a superconducting state to a more highly resistive one.

It’s through this switching of states that allows the tunneling of the phase slip to be observed, the researchers say.

Goldbart, who is also a researcher at the university’s Frederick Seitz Materials Research Laboratory, describes a quantum phase slip as a phenomenon that allows the spatially extended structure of superconductivity “to undergo a kind of quantum mechanical rip or tear, one where the entire extended behavior of the superconductivity tunnels its way through a classically forbidden set of configurations.”

“Semiconductors, insulators and metals all hinge upon the ability of particles to make it through classically forbidden regions, despite apparently having negative kinetic energy there, as quantum physics allows,” Goldbart said.

In Newton’s world, according to Goldbart, particles would be reflected from such regions.

Although quantum mechanics governs the realm of atoms and molecules and smaller, quantum phenomena sometimes “leak up” to macroscopic scales, he said.

The ultrathin superconducting nanowires fabricated and measured by Sahu and his co-researchers are about 2,000 times finer than a single strand of human hair, which is still “a substantially larger scale than where one typically expects to observe quantum tunneling,” Bezryadin said.

According to Bezryadin, who is also a researcher at the Beckman Institute and the Illinois Micro and Nanotechnology Laboratory, it has long been established that single electrons can tunnel, but scant evidence has existed until now for the group tunneling of a large ensemble of superconducting electrons confined in a thin wire.

“Observing switching events in superconducting nanowires at high-bias currents provides strong evidence for quantum phase slips,” Bezryadin said. “Our experiments provide further evidence that the laws of quantum mechanics continue to govern large systems, composed of many thousands of electrons, acting as a single entity.”

Both researchers believe that the practical implication of knowledge gleaned from research into quantum tunneling could have applications in the field of quantum computing.

“If we learn how to evade the factors that currently suppress quantum superpositions at the macro-scale,” Bezryadin said, “we would be better positioned to construct quantum bits for quantum computers, which could perform tasks with an enormous increase in speed and security.”

Funding for this research was provided by the U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory and the Institute for Condensed Matter Theory, both at the University of Illinois.

Editor’s note: To contact Alexey Bezryadin, call 217-333-9580; e-mail: bezryadi@illinois.edu.

Paul Goldbart: 217-333-1195; goldbart@illinois.edu

Phil Ciciora | Newswise Science News
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>