Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evidence found for the Higgs boson direct decay into fermions


For the first time, researchers at CERN have found evidence for the direct decay of the Higgs boson into fermions – another strong indication that the particle discovered in 2012 behaves in the way the standard model of particle physics predicts. Researchers from the University of Zurich made a significant contribution to the study published in Nature Physics.

For the first time, scientists from the CMS experiment on the Large Hadron Collider (LHC) at CERN have succeeded in finding evidence for the direct decay of the Higgs boson into fermions. Previously, the Higgs particle could only be detected through its decay into bosons.

“This is a major step forwards,” explains Professor Vincenzo Chiochia from the University of Zurich’s Physics Institute, whose group was involved in analyzing the data. “We now know that the Higgs particle can decay into both bosons and fermions, which means we can exclude certain theories predicting that the Higgs particle does not couple to fermions.” As a group of elementary particles, fermions form the matter while bosons act as force carriers between fermions.

According to the standard model of particle physics, the interaction strength between the fermions and the Higgs field must be proportional to their mass. “This prediction was confirmed,” says Chiochia; “a strong indication that the particle discovered in 2012 actually behaves like the Higgs particle proposed in the theory.”

... more about:
»CERN »CMS »Collider »GeV »Hadron »Higgs »LHC »Vincenzo »detector »fermions »mass »physics

Combined data analysis
The researchers analyzed the data gathered at the LHC between 2011 and 2012, combining the Higgs decays into bottom quarks and tau leptons, both of which belong to the fermion particle group. The results reveal that an accumulation of these decays comes about at a Higgs particle mass near 125 gigaelectron volts (GeV) and with a significance of 3.8 sigma. This means that the probability of the background alone fluctuating up by this amount or more is about one in 14,000. In particle physics, a discovery is deemed confirmed from a significance of five sigma.

Measuring the Higgs decay modes
Three different processes were studied, whereby the UZH researchers analyzed the Higgs decay into taus. Because the Higgs particle is extremely short-lived, it cannot be detected directly, but rather only via its decay products. The bottom quarks and taus, however, have a long enough lifetime to be measured directly in the CMS experiment’s pixel detector.

The University of Zurich and the Large Hadron Collider
The University of Zurich is actively involved in the LHC at CERN with five experimental research groups: The groups headed by professors Florencia Canelli, Vincenzo Chiochia and Ben Kilminster conduct research with the CMS detector, Professors Ulrich Straumann’s and Nicola Serra’s groups with the LHCb detector. For the analysis and interpretation of the data, they are supported by the groups under professors Thomas Gehrmann, Stefano Pozzorini, Gino Isidori and PD Dr. Massimiliano Grazzini.

The CMS detector at CERN
The CMS detector measures the energy and impulse of photons, electrons, muons and other charged particles with high precision. Different measuring instruments are arranged in tiers inside the 12,500-ton detector. 179 institutions worldwide are involved in the construction and operation of the CMS detector. The Swiss institutions are the University of Zurich, ETH Zurich and the Paul Scherrer Institute, which jointly developed and constructed the CMS pixel detector. 

The CMS Collaboration. «Evidence for the direct decay of the 125 GeV Higgs boson to fermions», Nature Physics Online. DOI: 10.1038/nphys3005

Prof. Vincenzo Chiochia
Physics Institute of the University of Zurich
Tel. + 41 22 767 60 41
Mobile: +41 76 487 57 50

Bettina Jakob
Media Relations
University of Zurich
Tel. +41 44 634 44 39

Weitere Informationen:

Bettina Jakob | Universität Zürich

Further reports about: CERN CMS Collider GeV Hadron Higgs LHC Vincenzo detector fermions mass physics

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

More VideoLinks >>>