Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence indicates auroras occur outside our solar system

22.01.2013
University of Leicester-led study suggests 'northern lights' occur on some small and 'failed' stars

University of Leicester planetary scientists have found new evidence suggesting auroras – similar to Earth's Aurora Borealis - occur on bodies outside our solar system.

Auroras occur on several planets within our solar system, and the brightest - on Jupiter – are 100 times brighter than those on Earth. However, no auroras have yet been observed beyond Neptune.

A new study led by University of Leicester lecturer Dr Jonathan Nichols has shown that processes strikingly similar to those which power Jupiter's auroras could be responsible for radio emissions detected from a number of objects outside our solar system.

In addition, the radio emissions are powerful enough to be detectable across interstellar distances – meaning that auroras could provide an effective way of observing new objects outside our solar system.

Auroras occur when charged particles in an object's magnetosphere collide with atoms in its upper atmosphere, causing them to glow. However, before hitting the atmosphere, these particles also emit radio waves into space.

The study, Origin of Electron Cyclotron Maser Induced Radio Emissions at Ultracool Dwarfs: Magnetosphere-Ionosphere Coupling Currents, which recently appeared in the Astrophysical Journal, shows that this phenomenon is not limited to our solar system.

It shows that the radio emissions from a number of ultracool dwarfs may be caused in a very similar, but significantly more powerful, way to Jupiter's auroras.

Dr Nichols, a Lecturer and Research Fellow in the University of Leicester's Department of Physics and Astronomy, said: "We have recently shown that beefed-up versions of the auroral processes on Jupiter are able to account for the radio emissions observed from certain "ultracool dwarfs" - bodies which comprise the very lowest mass stars - and "brown dwarfs" - 'failed stars' which lie in between planets and stars in terms of mass.

"These results strongly suggest that auroras do occur on bodies outside our solar system, and the auroral radio emissions are powerful enough - one hundred thousand times brighter than Jupiter's - to be detectable across interstellar distances."

The paper, which also involved researchers at the Center for Space Physics, Boston University, USA, could have major implications for the detection of planets and objects outside our solar system which could not be discovered with other methods.

What's more, the radio emission could provide us with key information about the length of the planet's day, the strength of its magnetic field, how the planet interacts with its parent star and even whether it has any moons.

Dr Nichols added: "I am part of a group who have recently been awarded time on the Low Frequency Array (LOFAR) - centred in the Netherlands but with stations across a number of countries in northern Europe including the UK - to try to observe auroras on exoplanets, so hopefully there will be some interesting results soon."

Dr Nichols' work was funded by the Science and Technology Facilities Council.

The LOFAR exoplanets work is led by Philippe Zarka, based at CNRS Observatory, Paris.

For more information, please contact Dr Nichols on +44 (0)116 252 5049 or at: jdn@ion.le.ac.uk

The full paper can be found at: http://iopscience.iop.org/0004-637X/760/1/59

For more information about the Science and Technology Facilities Council visit: http://www.stfc.ac.uk/About+STFC/19072.aspx

Dr Jonathan Nichols | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>