Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europium discovery - New element found to be a superconductor

18.05.2009
Of the 92 naturally occurring elements, add another to the list of those that are superconductors.

James S. Schilling, Ph.D., professor of physics in Arts & Sciences at Washington University in St. Louis, and Mathew Debessai — his doctoral student at the time — discovered that europium becomes superconducting at 1.8 K (-456 °F) and 80 GPa (790,000 atmospheres) of pressure, making it the 53rd known elemental superconductor and the 23rd at high pressure.

Debessai, who receives his doctorate in physics at Washington University's Commencement May 15, 2009, is now a postdoctoral research associate at Washington State University.

"It has been seven years since someone discovered a new elemental superconductor," Schilling said. "It gets harder and harder because there are fewer elements left in the periodic table."

This discovery adds data to help improve scientists' theoretical understanding of superconductivity, which could lead to the design of room-temperature superconductors that could be used for efficient energy transport and storage.

The results are published in the May 15, 2009, issue of Physical Review Letters in an article titled "Pressure-induced Superconducting State of Europium Metal at Low Temperatures."

Schilling's research is supported by a four-year $500,000 grant from the National Science Foundation, Division of Materials Research.

Europium belongs to a group of elements called the rare earth elements. These elements are magnetic; therefore, they are not superconductors.

"Superconductivity and magnetism hate each other. To get superconductivity, you have to kill the magnetism," Schilling explained.

Of the rare earths, europium is most likely to lose its magnetism under high pressures due to its electronic structure. In an elemental solid almost all rare earths are trivalent, which means that each atom releases three electrons to conduct electricity.

"However, when europium atoms condense to form a solid, only two electrons per atom are released and europium remains magnetic. Applying sufficient pressure squeezes a third electron out and europium metal becomes trivalent. Trivalent europium is nonmagnetic, thus opening the possibility for it to become superconducting under the right conditions," Schilling said.

Schilling uses a diamond anvil cell to generate such high pressures on a sample. A circular metal gasket separates two opposing 0.17-carat diamond anvils with faces (culets) 0.18 mm in diameter. The sample is placed in a small hole in the gasket, flanked by the faces of the diamond anvils.

Pressure is applied to the sample space by inflating a doughnut-like bellow with helium gas. Much like a woman in stilettos exerts more pressure on the ground than an elephant does because the woman's force is spread over a smaller area, a small amount of helium gas pressure (60 atmospheres) creates a large force (1.5 tons) on the tiny sample space, thus generating extremely high pressures on the sample.

Unique electrical, magnetic properties

Superconducting materials have unique electrical and magnetic properties. They have no electrical resistance, so current will flow through them forever, and they are diamagnetic, meaning that a magnet held above them will levitate.

These properties can be exploited to create powerful magnets for medical imaging, make power lines that transport electricity efficiently or make efficient power generators.

However, there are no known materials that are superconductors at room temperature and pressure. All known superconducting materials have to be cooled to extreme temperatures and/or compressed at high pressure.

"At ambient pressure, the highest temperature at which a material becomes superconducting is 134 K (-218 °F). This material is complex because it is a mixture of five different elements. We do not understand why it is such a good superconductor," Schilling said.

Scientists do not have enough theoretical understanding to be able to design a combination of elements that will be superconductors at room temperature and pressure. Schilling's result provides more data to help refine current theoretical models of superconductivity.

"Theoretically, the elemental solids are relatively easy to understand because they only contain one kind of atom," Schilling said. "By applying pressure, however, we can bring the elemental solids into new regimes, where theory has difficulty understanding things.

"When we understand the element's behavior in these new regimes, we might be able to duplicate it by combining the elements into different compounds that superconduct at higher temperatures."

Schilling will present his findings at the 22nd biennial International Conference on High Pressure Science and Technology in July 2009 in Tokyo, Japan.

James S. Schilling | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>