Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European XFEL starts operation phase

04.07.2017

The world’s largest X-ray laser, the European XFEL, has now entered its operation phase. Over the past few weeks, engineers and scientists at European XFEL and DESY have been working to ensure that the experiment stations are equipped with instruments and that the X-ray beam meets the parameters needed to start doing experiments. On Friday, the European XFEL Council, the highest governing organ of European XFEL, agreed that the conditions for the start of operation have now been satisfied, and consequently released the funds designated for the operation phase.

The X-ray laser produces extremely bright and short X-ray flashes that, with the help of specialised experiment stations, allow scientists to gain completely new insights into the atomic details and processes of the nanoworld. First experiments are now possible and have started for commissioning purposes; user operation with scientific research is scheduled to begin in September.


Fresnel diffraction pattern at the European XFEL

This diffraction pattern, recorded at the SPB/SFX instrument at the European XFEL, is generated by shining the European XFEL laser light through an approximately millimetre-wide square gap. The evenly spaced, grid-like lines of the pattern show areas of interference resulting from diffraction through the gap, demonstrating that the light has very high quality laserlike properties.

Copyright European XFEL

Prof. Martin Meedom Nielsen, chairman of the European XFEL Council said: "The member states are very pleased and excited about the great achievements made at the European XFEL, which mean we can now start the operation phase of this world-leading X-ray science facility. This major milestone has been eagerly awaited by the international user community, who are busily preparing for experiments that will break new scientific ground. I would like to express my sincere appreciation to the European XFEL management and staff, and to the accelerator consortium led by DESY, for their dedication and hard work.”

“Since successfully producing the first laser light in May, DESY and European XFEL have continued to make significant progress. I am very pleased that we have met the requirements to start research at the X-ray laser,” said European XFEL Managing Director Prof. Robert Feidenhans’l.

In order to qualify for the transition from commissioning to operation phase, the facility had to meet a number of pre-determined technical requirements. These requirements state that the pulses of the X-ray laser at a wavelength of maximally two Ångströms (0.2 nanometres) reach a typically high intensity and remain stable. In addition, the two experiment stations of the first beamline should be sufficiently equipped so that first scientific experiments can be carried out.

Other developments since producing the first laser light in May, include producing short waved so-called hard X-rays, successfully guiding the X-ray beam via special mirrors into the experiment hutches, and commissioning a number of highly specialised instruments for characterizing the properties of the X-ray beam. Directly after the first X-ray beam was guided into the hutches on 23 June, teams at European XFEL started with the characterisation of the beam and experiments for the commissioning of the instruments.

With a wavelength of initially two Ångströms and the required peak light intensity, the X-ray light will allow the recording of atomic detail. At two experiment stations first experiments are now possible: At the instrument FXE (Femtosecond X-ray Experiments), that is designed for the research of extremely fast processes, and at the instrument SPB/SFX (Single Particles, Clusters, and Biomolecules / Serial Femtosecond Crystallography), designed for studying biomolecules and biological structures.

The official opening of the international facility will take place on 1 September and the first scientific users are expected within the weeks following that. Project proposals for the first round of beamtime have been evaluated by international committees of experts over the past few weeks. Successful submissions will be announced shortly.

“We look forward to welcoming the first external users to our research campus in Schenefeld very soon”, adds Feidenhans’l.

European XFEL will continue with completing the construction of two additional X-ray light producing systems (undulators), the associated beamlines into the experiment hall and four more experiment stations. At the same time the average intensity of the X-ray laser beam will be increased step-by-step up to the target pulse rate of 27,000 pulses per second, making the European XFEL unique worldwide.

About European XFEL

The European XFEL, currently being commissioned in the Hamburg area, is an international research facility of superlatives: 27,000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organisations worldwide. The company, which has a workforce of about 300 employees, expects to start user operation of the facility in the second half of 2017. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland. The United Kingdom is in the process of joining.

Contact:
Bernd Ebeling
bernd.ebeling@xfel.eu
+49 40 89986921

Weitere Informationen:

https://media.xfel.eu/XFELmediabank/?l=en&c=16055 Pictures
http://www.xfel.eu European XFEL website

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft

Further reports about: DESY X-ray X-ray beam X-ray light X-ray sources XFEL laser beam laser light nanoworld

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>