Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The European Synchrotron radiation facility launches an ambitious Upgrade Programme

26.11.2008
More than ten thousand scientists across Europe will profit from new investments in the European Synchrotron Radiation Facility (ESRF) approved today. Over the next seven years, unique new experimental facilities for research with X-rays will come into operation. This decision, taken by the ESRF Council, representing the 19 countries financing the ESRF, confirms Europe’s vision to expand its global leadership in photon science.

On 24-25 November 2008, the 50th Council meeting of the ESRF approved a 10% budget increase for 2009, to start a 177 million Euros Upgrade Programme over the next seven years (2009-2015). The main element of this programme is the development of new world-class experimental stations (beamlines) which will gradually enter into service as of 2011.

The ESRF Upgrade Programme builds on the fact that no other research infrastructure is growing faster than light sources: since 1994 when the ESRF was inaugurated, more than twenty new synchrotrons opened in Europe, the US and Asia. They produce cutting-edge science, illustrated by the publication of at least one paper on average in every single issue of “Science” and “Nature” in 2007. As much as 20% of this global scientific output originated at the ESRF and much of it is relevant to everyday life. Whether it relates to promising targets for a new drug, candidate materials for hydrogen storage in cars, dust grains collected in outer space or liquid-crystal photovoltaic cells, there is a high probability that such research includes experiments at the ESRF to determine structures and properties at the atomic scale with unequalled resolution and accuracy.

“I am convinced that the Upgrade Programme will ensure the competitiveness of the ESRF for the benefit of Europe and European science” says Professor Robert Feidenhans’l, Deputy Director of the Niels-Bohr Institute in Copenhagen and Chairman of the ESRF Council. The five key targets of the Upgrade Programme are:

Nanoscience and technology: Molecular machines, quantum dots or self-assembling 2-D crystals sound like magic words today but nanotechnology will be in tomorrow’s consumer products. The future nanoscience beamlines at the ESRF are a foundation stone for such nano-engineering.

Structural biology and soft matter: Progress in health and life sciences is linked to understanding processes at the atomic scale. There is an explosion today in demand to resolve the structure of molecules for the development of new drugs. A new generation of automated experiments will screen about a thousand samples in a single day.

Ultrafast molecular processes: Studying a chemical reaction as it happens, like in a film, is possible today, but not at sufficient speed. Pushing the time-resolution into the picosecond (one trillionth of a second) regime will open new insight in chemical processing, catalysis and how proteins function in living cells.

Science at extreme conditions: Developing advanced materials, chemical processing and planetary science all need to put samples under extreme pressure, temperatures and magnetic fields. Whatever the extreme, the ESRF will strive to make it available in situ on one of its beamlines.

X-ray imaging: Revealing both the 3-D structure and the chemical composition of an object without altering it has countless applications in materials science, cultural heritage and engineering. The objective in this field is to resolve structures smaller than one micrometre.

“It was a challenging task to satisfy the needs of a huge and varied scientific community from many countries, and even more challenging to strike a balance between ambition and affordability. I am very gratefull to our member countries. Despite a difficult funding context, they have given the green light for our Upgrade Programme, which will ensure a very bright future for the ESRF”, says Professor Bill Stirling, Director General of the ESRF.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/general/upgradelaunch

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>