Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


European Satellites Probe a New Magnetar

NASA's Swift satellite reported multiple blasts of radiation from a rare object known as a soft gamma repeater, or SGR. Now, astronomers report an in-depth study of these eruptions using the European Space Agency's XMM-Newton and International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellites.

The object, designated SGR 0501+4516, was the first of its type discovered in a decade and is only the fifth confirmed SGR. "Some sources are extremely active, but others can be quiet for a decade or more," said Nanda Rea, University of Amsterdam, who led the study. "This suggests many members of this class remain unknown."

Astronomers think the eruptions of SGRs arise from the most highly magnetized objects in the universe -- magnetars. Magnetars are neutron stars -- the crushed cores of exploded stars -- that, for reasons not yet known, possess ultra-strong magnetic fields. With fields 100 trillion times stronger than Earth’s, a magnetar placed half the moon’s distance would wipe the magnetic strips of every credit card on the planet. "Magnetars allow us to study extreme matter conditions that cannot be reproduced on Earth," said Kevin Hurley, a team member at the University of California, Berkeley.

Both SGRs and a related group of high-energy neutron stars -- called anomalous X-ray pulsars -- are thought to be magnetars. But, all told, astronomers know of only 15 examples.

SGR 0501+4516, estimated to lie about 15,000 light years away, was only discovered because its outburst gave it away. Astronomers think an unstable configuration of the star's magnetic field triggers the eruptions. "Once the magnetic field resumes a more stable configuration, the activity ceases and the star returns to quiet and dim emission," Rea said.

Twelve hours after Swift pinpointed SGR 0501+4516, XMM-Newton began the most detailed study of a fading magnetar outburst ever attempted. The object underwent hundreds of small bursts over a period of more than four months. Only five days after the initial eruption, INTEGRAL detected X-rays from the object that were beyond the energy range XMM-Newton can see. It's the first time such transient high-energy X-ray emission has been detected during an SGR's outburst phase. This emission disappeared within ten days of the outburst. The findings were published online June 15 in the Monthly Notices of the Royal Astronomical Society.

The team plans further observations of SGR 0501+4516 with XMM-Newton. They hope to detect the object in a quiet state in order to probe the calm after the storm.

Francis Reddy | EurekAlert!
Further information:

Further reports about: Integral Magnetar SGR X-ray microscopy XMM-Newton magnetic field neutron star satellites

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>