Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European research collaboration to break barriers for next generation wireless chips

04.11.2008
The Mathematical Institute of the University of Cologne conducts research within in the European project ICESTARS (Integrated Circuit/Electromagnetic Simulation and design Technologies for Advanced Radio Systems-on-chip).

New mathematical algorithms for the next radio chip generation will be developed under the leadership of Prof. Dr. Caren Tischendorf. According to Prof. Tischendorf: "In the future, mobile devices will provide customers with services ranging from telephony and internet to mobile TV and remote banking, anytime, anywhere.

It is impossible to realize the necessary, extremely high data transfer rates within the frequency bands used today (approximately 1-3GHz)." The project serves to enable the development of low-cost wireless chips that can operate in a frequency range of up to 100GHz.

The leader of the ICESTARS project, Marq Kole of NXP Semiconductors says: "By the end of the project in 2010 we aim to have accelerated the chip development process in the extremely high frequency range by new methods and simulation tools in order to actively maintain the European chip developers on a top position over the whole spectrum of wireless communications."

The ICESTARS project is funded by the European Commission within the EU 7th framework program and lead by Dutch company NXP Semiconductors. The German semiconductor company Qimonda will develop advanced analog simulation techniques in the framework of this project.

Additional partners are the software developing companies AWR-APLAC from Finland with a focus onto frequency-domain simulation algorithms and MAGWEL from Belgium with a focus onto electromagnetic simulations.

Besides the University of Cologne, the university partners Upper Austria University of Applied Sciences, the University of Wuppertal from Germany and the University of Oulu from Finland are concentrating on modeling questions, algorithmic problems and simulation issues to be solved for a robust and accelerated automated testing of analog circuits with digital signal processing in the extremely high frequency range.

Prof. Dr. Caren Tischendorf | alfa
Further information:
http://www.icestars.eu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>