Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European research collaboration to break barriers for next generation wireless chips

04.11.2008
The Mathematical Institute of the University of Cologne conducts research within in the European project ICESTARS (Integrated Circuit/Electromagnetic Simulation and design Technologies for Advanced Radio Systems-on-chip).

New mathematical algorithms for the next radio chip generation will be developed under the leadership of Prof. Dr. Caren Tischendorf. According to Prof. Tischendorf: "In the future, mobile devices will provide customers with services ranging from telephony and internet to mobile TV and remote banking, anytime, anywhere.

It is impossible to realize the necessary, extremely high data transfer rates within the frequency bands used today (approximately 1-3GHz)." The project serves to enable the development of low-cost wireless chips that can operate in a frequency range of up to 100GHz.

The leader of the ICESTARS project, Marq Kole of NXP Semiconductors says: "By the end of the project in 2010 we aim to have accelerated the chip development process in the extremely high frequency range by new methods and simulation tools in order to actively maintain the European chip developers on a top position over the whole spectrum of wireless communications."

The ICESTARS project is funded by the European Commission within the EU 7th framework program and lead by Dutch company NXP Semiconductors. The German semiconductor company Qimonda will develop advanced analog simulation techniques in the framework of this project.

Additional partners are the software developing companies AWR-APLAC from Finland with a focus onto frequency-domain simulation algorithms and MAGWEL from Belgium with a focus onto electromagnetic simulations.

Besides the University of Cologne, the university partners Upper Austria University of Applied Sciences, the University of Wuppertal from Germany and the University of Oulu from Finland are concentrating on modeling questions, algorithmic problems and simulation issues to be solved for a robust and accelerated automated testing of analog circuits with digital signal processing in the extremely high frequency range.

Prof. Dr. Caren Tischendorf | alfa
Further information:
http://www.icestars.eu

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>