Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe’s new X-ray laser reaches important milestone

07.06.2013
An important milestone was reached on Germany’s largest science construction site: the underground civil engineering work for the X-ray laser European XFEL has been completed, and the underground construction is almost finished. Today, about 300 guests from politics, academia, administration, and business gathered to celebrate and visit the underground facilities in Schenefeld (Schleswig-Holstein).

Starting in 2016, the European XFEL will generate intensive X-ray flashes, allowing scientists to investigate, for example, the atomic structure of biomolecules, pathogens, and numerous new and existing materials, as well as film chemical reactions.

The complex will consist of a tunnel system that is approximately 5.8 kilometres long as well as several buildings on the campus of Deutsches Elektronen-Synchrotron (DESY) in Hamburg-Bahrenfeld, at the Osdorfer Born site, and on the main Schenefeld site. The tunnels open into a 4500 square metre underground experiment hall, with dimensions comparable to those of a hockey field. Its depth of 14 metres offers enough space to make a four- to five-storey house disappear completely.

Hamburg’s Senator for Science Dr. Dorothee Stapelfeldt: “Working together with strong partners can make you even more successful: Twelve European countries are participating in the construction and operation of the European XFEL. The German government and the federal states of Schleswig-Holstein and Hamburg contribute more than half of the building costs. With the investments into the European XFEL, the metropolitan region of Hamburg underscores its leading position as an international centre for structural research.”

In her remarks at today’s celebration, Dr. Beatrix Vierkorn-Rudolph, head of the Directorate for Large Facilities and Basic Research of the German Federal Ministry of Education and Research (BMBF) and chair of the European Strategy Forum on Research Infrastructures (ESFRI), said: “The huge dimensions we see here remind us yet again what a truly unique project this is. The underground civil construction was to be completed by May 2013—an ambitious goal. I am very pleased that the underground civil construction of this large-scale international project was concluded on schedule.”

“Twelve European countries have joined forces to jointly build a worldwide-unique research facility. At this point, we have successfully completed underground civil construction, which was probably the most difficult construction phase,” said Massimo Altarelli, managing director of European XFEL. “Now we will concentrate on the construction of the above-ground buildings, the installation of the X-ray laser, and the continuing development of the corresponding scientific instruments and tools.” Altarelli thanked the construction companies and their personnel for their achievements. He also expressed his gratitude to the BMBF, the other 11 partner countries, the federal states of Hamburg and Schleswig-Holstein, the Pinneberg district, and the town of Schenefeld for their support.

DESY, the main shareholder of European XFEL and the building contractor for the underground civil construction work, is currently installing the technical infrastructure. “Europe’s new X-ray laser will provide unprecedented insights into the nanocosm,” said Helmut Dosch, chairman of the DESY Board of Directors. “All those who contributed to the civil engineering works of this large-scale international project can be proud: the DESY building department, which carried out the construction management, as well as the staffs of the participating construction companies, of European XFEL, and of DESY.” Dosch also thanked the neighbours of the construction site for their patience and understanding.

In the past three years, about 3500 construction workers, most of them working for the ARGE Tunnel XFEL consortium, moved more than 500 000 cubic metres of earth and used 150 000 cubic metres of concrete and 28 tons of steel for underground construction. The tunnels, which were completed last year, were excavated with two tunnel boring machines—one 71 metres long, the other 83 metres long—weighing more than 500 tons each. Starting on the DESY campus in Hamburg-Bahrenfeld, the 2 kilometre long accelerator tunnel leads to the Osdorfer Born site. In this tunnel, DESY will build a particle accelerator for the European XFEL that will accelerate electrons to almost the speed of light. Then, the fast particles will be distributed to the so-called photon tunnels, where X-ray light will be produced. To reach this goal, European XFEL scientists will use strong magnets (undulators) to force the electrons to follow a slalom course. In the curves, the particles will emit light flashes. The course will be set in such a way that the light flashes—as in a laser—reinforce each other to an intense pulse.

Five photon tunnels end in the underground experiment hall in Schenefeld, where the X-ray flashes will be guided to up to 15 scientific instruments. The construction of the experiment hall was especially challenging because the ground of the building pit was located far below the ground water level. Divers were needed to build the concrete foundation under water before the water could be pumped from the pit. To prevent the foundation from being lifted like a ship by the ground water, the concrete was anchored in the ground with about 560 steel tie bars up to 22 metres long.

Next year, construction of the main building of the European XFEL will continue on the experiment hall, with three additional storeys of laboratories and offices. At the same time, DESY and European XFEL staff members will install the infrastructure, scientific instruments, and technical equipment. The remaining buildings will be completed in 2015, and the new X-ray laser will start user operation in 2016. Today, the research light sources PETRA III and FLASH at DESY provides biologists, physicians, chemists, physicists, and materials scientists with detailed insights into the molecular and atomic structure of their samples. With the European XFEL, the metropolitan region of Hamburg will be further strengthened as an outstanding centre for the exploration of the nanocosm.

Pictures of the underground construction and the event are available at www.desy.de und www.xfel.eu

About European XFEL
The European XFEL, currently under construction in the Hamburg area, will be an international research facility of superlatives: 27 000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organizations worldwide. With a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 12 countries are participating: Denmark, France, Germany, Greece, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland. More information: www.xfel.eu/de

About DESY
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. The DESY institutes in Hamburg and Zeuthen near Berlin develop, build and operate large particle accelerators to investigate the structure of matter. DESY conducts research in the fields of photon science and particle physics – this combination is unique in Europe. More information: www.desy.de

Dr. Bernd Ebeling | idw
Further information:
http://www.desy.de
http://www.xfel.eu/de

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>