Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europa does the wave to generate heat

15.12.2008
One of the moons in our solar system that scientists think has the potential to harbor life may have a far more dynamic ocean than previously thought.

If the moon Europa is tilted on its axis even slightly as it orbits the giant planet Jupiter, then Jupiter's gravitational pull could be creating powerful waves in Europa's ocean, according to Robert Tyler, an oceanographer with the University of Washington's Applied Physics Laboratory and author of a letter in the Dec. 11 Nature. As those waves dissipate, they would give off significant heat energy.

Depending on the amount of tilt, the heat generated by the ocean flow could be 100 to thousands of times greater than the heat generated by the flexing of Europa's rocky core in response to gravitational pull from Jupiter and the other moons circling that planet.

That's the current assumption – that oceans on moons are heated mainly by this flexing of their cores. In the case of Europa, it also has been thought that the thick ice covering its ocean probably generates some heat as two sides of cracked ice rub together in response to gravitational pull.

"If my work is correct then the heat source for Europa's ocean is the ocean itself rather than what's above or below it," Tyler says. "And we must form a new vision of the ocean habitat that involves strong ocean flow rather than the previously assumed sluggish flows."

Both are important considerations if exploratory missions are ever sent to Europa in search of life. Europa, which is slightly smaller than Earth's moon, is one of Jupiter's 63 moons. With surface temperatures as cold as minus 260 degrees Fahrenheit, Europa's surface is covered with a thick layer of ice. There is evidence of a liquid ocean beneath the ice and, if there is volcanic activity on the sea floor, this could be a recipe for generating microorganisms that live without sunlight, perhaps like the microorganisms found at hydrothermal vents and other places on Earth.

Many planets and moons are known to be tilted within their orbital plane. The Earth, for example, has an axial tilt of about 23 degrees. It's why the northern and southern hemispheres have different seasons, depending on whether they are tilted more toward or away from the sun.

Previous theoretical calculations expected Europa to have an axial tilt of at least 0.1 degrees. It hasn't been measured and could be bigger than this. But even at this minimum value the tidal flow on Europa using Tyler's new calculation is quite strong – some 10 centimeters a second – and enough to cause significant heating.

The new calculation differs from previous ones in that it allows a more realistic dynamic response of the ocean to the tidal forces.

His assumptions and calculations led him to say that he thinks this kind of wave action could be the dominant heat source in the oceans of Europa and other moons.

"But this proposal is a relatively new contender – so let's see how it does," he says. Tyler is the sole author of the letter in Nature. His work was supported by NASA's Outer Planets Research program.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>