Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europa does the wave to generate heat

15.12.2008
One of the moons in our solar system that scientists think has the potential to harbor life may have a far more dynamic ocean than previously thought.

If the moon Europa is tilted on its axis even slightly as it orbits the giant planet Jupiter, then Jupiter's gravitational pull could be creating powerful waves in Europa's ocean, according to Robert Tyler, an oceanographer with the University of Washington's Applied Physics Laboratory and author of a letter in the Dec. 11 Nature. As those waves dissipate, they would give off significant heat energy.

Depending on the amount of tilt, the heat generated by the ocean flow could be 100 to thousands of times greater than the heat generated by the flexing of Europa's rocky core in response to gravitational pull from Jupiter and the other moons circling that planet.

That's the current assumption – that oceans on moons are heated mainly by this flexing of their cores. In the case of Europa, it also has been thought that the thick ice covering its ocean probably generates some heat as two sides of cracked ice rub together in response to gravitational pull.

"If my work is correct then the heat source for Europa's ocean is the ocean itself rather than what's above or below it," Tyler says. "And we must form a new vision of the ocean habitat that involves strong ocean flow rather than the previously assumed sluggish flows."

Both are important considerations if exploratory missions are ever sent to Europa in search of life. Europa, which is slightly smaller than Earth's moon, is one of Jupiter's 63 moons. With surface temperatures as cold as minus 260 degrees Fahrenheit, Europa's surface is covered with a thick layer of ice. There is evidence of a liquid ocean beneath the ice and, if there is volcanic activity on the sea floor, this could be a recipe for generating microorganisms that live without sunlight, perhaps like the microorganisms found at hydrothermal vents and other places on Earth.

Many planets and moons are known to be tilted within their orbital plane. The Earth, for example, has an axial tilt of about 23 degrees. It's why the northern and southern hemispheres have different seasons, depending on whether they are tilted more toward or away from the sun.

Previous theoretical calculations expected Europa to have an axial tilt of at least 0.1 degrees. It hasn't been measured and could be bigger than this. But even at this minimum value the tidal flow on Europa using Tyler's new calculation is quite strong – some 10 centimeters a second – and enough to cause significant heating.

The new calculation differs from previous ones in that it allows a more realistic dynamic response of the ocean to the tidal forces.

His assumptions and calculations led him to say that he thinks this kind of wave action could be the dominant heat source in the oceans of Europa and other moons.

"But this proposal is a relatively new contender – so let's see how it does," he says. Tyler is the sole author of the letter in Nature. His work was supported by NASA's Outer Planets Research program.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>