Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA spacecraft may help unravel cosmic mystery

16.11.2009
When Europe's comet chaser Rosetta swings by Earth tomorrow for a critical gravity assist, tracking data will be collected to precisely measure the satellite's change in orbital energy. The results could help unravel a cosmic mystery that has stumped scientists for two decades.

Since 1990, scientists and mission controllers at ESA and NASA have noticed that their spacecraft sometimes experience a strange variation in the amount of orbital energy they exchange with Earth during planetary swingbys.

The unexplained variation is noticed as a tiny difference in speed gained or lost during the swingby when comparing that predicted by fundamental physics and that actually measured after the event.

Tiny unexplained speed variations

The unexplained speed variations are extremely small: NASA's Galileo satellite experienced an increase of just 3.9 mm/s above the expected value when it swung past Earth in December 1990. The largest unexpected variation - a boost of 13.0 mm/s - was observed with NASA's NEAR spacecraft at its Earth swingby in January 1998. On the other hand, variations seen at the swingbys of NASA's Cassini in 1999 and Messenger in 2005 were so small that they lay within the bounds of uncertainty.
ESA's Rosetta has made two Earth swingbys, in 2005 and 2007. It too, experienced the strange anomaly. Frustratingly, Rosetta sped up by an unexplained 1.8 mm/s during the first passage, but experienced no slowing or speeding in 2007. No one knows what will happen on 13 November 2009 for Rosetta's third and last Earth swingby: scientists are stumped.
"It's a mystery as to what is happening with these gravity events. Some studies have looked for answers in new interpretations of current physics. If this proves correct, it would be absolutely ground-breaking news," says Trevor Morley, lead flight dynamics specialist working on Rosetta at ESOC, ESA's European Space Operations Centre, Darmstadt, Germany.

ESA researchers study Rosetta

Together with ESA colleague and orbital mechanics specialist Frank Budnik, Morley co-authored a scientific report in 2006 that studied the Rosetta anomaly during the 2005 swingby and listed possible causes.

These range from tidal effects peculiar to the near-Earth environment, atmospheric drag, or the pressure of radiation emitted or reflected by the Earth, to much more extreme possibilities, such as dark matter, dark energy or previously unseen variations in General Relativity, one of the most fundamental and well-tested theories of modern physics.

One American research team, led by ex-NASA scientist John Anderson, is even looking at the possibility that Earth's rotation may be distorting space-time - the fundamental fabric of our Universe - more than expected, thus affecting nearby spacecraft. But there is as yet no explanation how this could happen.

Before even considering such exotic explanations, all the usual causes of spacecraft speed errors have been thoroughly eliminated by numerous investigations conducted over the years at both ESA and NASA. Software bugs, calculation errors, tracking uncertainties and other, much more mundane, causes have all been systematically eliminated or accounted for, leaving the speed anomaly maddeningly unexplained.

NASA's Pionneer 10 & 11 similarly affected

Scientists at a number of universities and research centres in Europe, the US and Japan have worked on the anomaly problem over the past years. The Earth swingby anomaly has been compared to another unexplained anomaly - one experienced by NASA's Pioneer 10 and 11 spacecraft.
As they travel on trajectories that will take them eventually into interstellar space, both have experienced an unexpected acceleration directed toward the Sun, which has yet to be explained.

Watching through the night

At ESOC on 13 November, the mission control and flight dynamics teams will be watching closely as ESA's 35m New Norcia station in Australia tracks Rosetta during the closest approach, expected at 08:45:40.0 CET, followed - after a visibility gap of 20 minutes - by ESA's 15m Maspalomas station.
The tracking activity will generate highly precise data that will record whether the spacecraft speeds up or slows down more or less than expected. Deep space ground stations operated by NASA, at Canberra, Australia, and Goldstone, California, will also observe the spacecraft before and after closest approach.

ESA/NASA Cassini-Huygens swings by Earth 1999, slowing unexpectedly
"We are using as many ground stations as are available to maximise the amount of swingby data we record. The more data we get, the better the chance that we may eventually come up with an answer," says Morley.
The data is keenly awaited by scientists on a number of continents, who are hoping to see whether the anomaly is present and whether an explanation is finally possible.

"As it stands now, no one knows what's behind this - it really is a mystery. And your prediction as to whether Rosetta will experience any swingby speed anomaly at all on 13 November is as good as anyone's," says Morley.

Jocelyne Landeau-Constantin | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/Rosetta/SEMUCV3VU1G_0.html

Further reports about: ESA ESOC Earth swingby Earth's magnetic field NASA cosmic mystery speed variations

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>