Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA spacecraft may help unravel cosmic mystery

16.11.2009
When Europe's comet chaser Rosetta swings by Earth tomorrow for a critical gravity assist, tracking data will be collected to precisely measure the satellite's change in orbital energy. The results could help unravel a cosmic mystery that has stumped scientists for two decades.

Since 1990, scientists and mission controllers at ESA and NASA have noticed that their spacecraft sometimes experience a strange variation in the amount of orbital energy they exchange with Earth during planetary swingbys.

The unexplained variation is noticed as a tiny difference in speed gained or lost during the swingby when comparing that predicted by fundamental physics and that actually measured after the event.

Tiny unexplained speed variations

The unexplained speed variations are extremely small: NASA's Galileo satellite experienced an increase of just 3.9 mm/s above the expected value when it swung past Earth in December 1990. The largest unexpected variation - a boost of 13.0 mm/s - was observed with NASA's NEAR spacecraft at its Earth swingby in January 1998. On the other hand, variations seen at the swingbys of NASA's Cassini in 1999 and Messenger in 2005 were so small that they lay within the bounds of uncertainty.
ESA's Rosetta has made two Earth swingbys, in 2005 and 2007. It too, experienced the strange anomaly. Frustratingly, Rosetta sped up by an unexplained 1.8 mm/s during the first passage, but experienced no slowing or speeding in 2007. No one knows what will happen on 13 November 2009 for Rosetta's third and last Earth swingby: scientists are stumped.
"It's a mystery as to what is happening with these gravity events. Some studies have looked for answers in new interpretations of current physics. If this proves correct, it would be absolutely ground-breaking news," says Trevor Morley, lead flight dynamics specialist working on Rosetta at ESOC, ESA's European Space Operations Centre, Darmstadt, Germany.

ESA researchers study Rosetta

Together with ESA colleague and orbital mechanics specialist Frank Budnik, Morley co-authored a scientific report in 2006 that studied the Rosetta anomaly during the 2005 swingby and listed possible causes.

These range from tidal effects peculiar to the near-Earth environment, atmospheric drag, or the pressure of radiation emitted or reflected by the Earth, to much more extreme possibilities, such as dark matter, dark energy or previously unseen variations in General Relativity, one of the most fundamental and well-tested theories of modern physics.

One American research team, led by ex-NASA scientist John Anderson, is even looking at the possibility that Earth's rotation may be distorting space-time - the fundamental fabric of our Universe - more than expected, thus affecting nearby spacecraft. But there is as yet no explanation how this could happen.

Before even considering such exotic explanations, all the usual causes of spacecraft speed errors have been thoroughly eliminated by numerous investigations conducted over the years at both ESA and NASA. Software bugs, calculation errors, tracking uncertainties and other, much more mundane, causes have all been systematically eliminated or accounted for, leaving the speed anomaly maddeningly unexplained.

NASA's Pionneer 10 & 11 similarly affected

Scientists at a number of universities and research centres in Europe, the US and Japan have worked on the anomaly problem over the past years. The Earth swingby anomaly has been compared to another unexplained anomaly - one experienced by NASA's Pioneer 10 and 11 spacecraft.
As they travel on trajectories that will take them eventually into interstellar space, both have experienced an unexpected acceleration directed toward the Sun, which has yet to be explained.

Watching through the night

At ESOC on 13 November, the mission control and flight dynamics teams will be watching closely as ESA's 35m New Norcia station in Australia tracks Rosetta during the closest approach, expected at 08:45:40.0 CET, followed - after a visibility gap of 20 minutes - by ESA's 15m Maspalomas station.
The tracking activity will generate highly precise data that will record whether the spacecraft speeds up or slows down more or less than expected. Deep space ground stations operated by NASA, at Canberra, Australia, and Goldstone, California, will also observe the spacecraft before and after closest approach.

ESA/NASA Cassini-Huygens swings by Earth 1999, slowing unexpectedly
"We are using as many ground stations as are available to maximise the amount of swingby data we record. The more data we get, the better the chance that we may eventually come up with an answer," says Morley.
The data is keenly awaited by scientists on a number of continents, who are hoping to see whether the anomaly is present and whether an explanation is finally possible.

"As it stands now, no one knows what's behind this - it really is a mystery. And your prediction as to whether Rosetta will experience any swingby speed anomaly at all on 13 November is as good as anyone's," says Morley.

Jocelyne Landeau-Constantin | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/Rosetta/SEMUCV3VU1G_0.html

Further reports about: ESA ESOC Earth swingby Earth's magnetic field NASA cosmic mystery speed variations

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>