Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA ground team in simulation training for GOCE launch

15.08.2008
The Mission Control Team at ESA's Space Operations Centre (ESOC) are now in intense training for the scheduled 10 September launch of GOCE, the Agency's Gravity field and steady-state Ocean Circulation Explorer.

GOCE is scheduled for lift-off at 16:21 CEST, 10 September 2008, from the Plesetsk Cosmodrome; the spacecraft arrived in Russia on 29 July on board an Antonov-124 cargo aircraft.

On 14 August, members of the Mission Control Team were on console in the Main Control Room at ESOC, Darmstadt, Germany, for a 12-hour simulation of the mission's countdown and launch phases; the simulation included practicing immediate reactions in case of any unexpected problems with the ground segment or the spacecraft.

GOCE team supported by experts throughout ESOC

The overall Mission Control Team is led by Flight Operations Director Pier Paolo Emanuelli and comprises a dedicated 13-person Flight Control Team, joined by an extended team of engineers from Ground Operations, Flight Dynamics, Software Support, Computers & Network Support, and ground stations.

Additional expertise is provided from ESOC in the areas of training, documentation and facilities management.

GOCE will orbit at an exceptionally low altitude

"The GOCE mission team are receiving excellent support from our colleagues at ESOC. GOCE is a challenging mission and will orbit at an exceptionally low altitude of just 268 km, so spacecraft control is very critical. The simulations campaign is close to the end and we are fully ready to support the launch in September," said Emanuelli.

To achieve its mission objectives - mapping Earth's gravity field in unprecedented detail - the slender, 5m-long satellite is designed to orbit at a low altitude because the gravitational variations are stronger closer to Earth.

The GOCE team will undergo intensive training, simulations and work-ups between now and the launch, with a strong focus on practicing for LEOP - the Launch and Early Orbit phase - the crucial first steps in GOCE's mission beginning after the satellite separates from the launcher's upper-most stage.

One highlight of today's training will be establishing and testing the voice and data communication links between ESOC in Germany and the Launch Control Centre at Plesetsk, Russia.

The GOCE team conducted previous simulations in July and August, and have spent the past months defining and confirming procedures and plans covering all possible nominal and contingency situations.

Flight control team engineers have also been working intently to ensure that the ground segment - the computers and software here at ESOC - is ready to support the mission.

A full launch and LEOP rehearsal will be conducted on 5 September, just five days prior to launch.

| alfa
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/GOCE/SEMF3MKRQJF_0.html

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>