Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Error message! How mobile phones distort measurements

17.09.2008
New facility for testing electromagnetic compatibility of measuring systems on site

Nowadays we don't only take measurements with simple measuring devices, but also with whole measuring systems. These are very complex and are completely set up from their component parts at the point of use.

Vehicle scales are an example of such a system. They weigh vehicles like trains, lorries or cars. Unfortunately these complete systems are susceptible to electromagnetic radiation such as that transmitted by mobile phones and radio transceivers – and this is despite the fact that the individual components of the system have passed the standardized test for exactly these types of radiation. This type of test is called an Electromagnetic Compatibility Test and should now also allow the Verification Authorities to test complete systems on site. For this purpose the PTB has developed a facility for use on site, to test electromagnetic compatibility.

The legal requirements for measuring devices subject to legal control also include the EMC, which is tested within the scope of the type examination by PTB. Hereby, the single components of the measuring system are exposed to defined electromagnetic fields in the laboratory. Although the components have passed an EMC test conforming to standards, the measuring systems installed on site are occasionally disturbed by radio receivers or mobile telephones such that false measurement values are shown. For this reason, the responsible authorities have in several cases rejected the verification of vehicle scales.

The awareness that the interference resistance of measuring systems is very decisively dependent on the configuration and the installation on site has not been sufficiently taken into account in the normative requirements. This discrepancy is based on the fact that the European testing requirements worked out several years ago do not sufficiently take into account the actual present-day disturbance source situation due to the spread of radio receivers and mobile telephones.

Due to this technical requirement and also the possible political consequences, a revision of the respective standards was initiated in which the PTB is participating. For the determination of new normative limiting values and for the assessment of the interference resistance of measuring devices on site by the verification authorities, metrologically traceable EMC tests on site are necessary, for which there has not been a measuring device available up to now.

For this reason, a transportable testing device was developed at the PTB, which enables testing at discrete frequencies between 27 MHz and 5.8 GHz. The frequencies were selected such that, on the one hand, the real disturbance sources are displayed and, on the other hand, the disturbance of radio services is avoided, so that as a result, the Federal Network Agency could grant a special permit for the restricted test operation. The frequencies of the testing device lie in the vicinity of the frequency bands of classical means of communication such as company radio and amateur radio, but also in the vicinity of the frequency ranges of modern communications systems such as GSM, DECT, UMTS, Bluetooth and WLAN.

In the test operation on site, the critical parts of the measuring system can at a distance of 1 m from the transmitting antenna be charged with the electromagnetic field successively for 1 min in each case for each single frequency and thereby the correct function of the measuring system be assessed. By means of a suitable design and a software user guidance, the presence of an expert in high frequency engineering is not necessary for the operation of the testing device on site.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>