Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Error message! How mobile phones distort measurements

17.09.2008
New facility for testing electromagnetic compatibility of measuring systems on site

Nowadays we don't only take measurements with simple measuring devices, but also with whole measuring systems. These are very complex and are completely set up from their component parts at the point of use.

Vehicle scales are an example of such a system. They weigh vehicles like trains, lorries or cars. Unfortunately these complete systems are susceptible to electromagnetic radiation such as that transmitted by mobile phones and radio transceivers – and this is despite the fact that the individual components of the system have passed the standardized test for exactly these types of radiation. This type of test is called an Electromagnetic Compatibility Test and should now also allow the Verification Authorities to test complete systems on site. For this purpose the PTB has developed a facility for use on site, to test electromagnetic compatibility.

The legal requirements for measuring devices subject to legal control also include the EMC, which is tested within the scope of the type examination by PTB. Hereby, the single components of the measuring system are exposed to defined electromagnetic fields in the laboratory. Although the components have passed an EMC test conforming to standards, the measuring systems installed on site are occasionally disturbed by radio receivers or mobile telephones such that false measurement values are shown. For this reason, the responsible authorities have in several cases rejected the verification of vehicle scales.

The awareness that the interference resistance of measuring systems is very decisively dependent on the configuration and the installation on site has not been sufficiently taken into account in the normative requirements. This discrepancy is based on the fact that the European testing requirements worked out several years ago do not sufficiently take into account the actual present-day disturbance source situation due to the spread of radio receivers and mobile telephones.

Due to this technical requirement and also the possible political consequences, a revision of the respective standards was initiated in which the PTB is participating. For the determination of new normative limiting values and for the assessment of the interference resistance of measuring devices on site by the verification authorities, metrologically traceable EMC tests on site are necessary, for which there has not been a measuring device available up to now.

For this reason, a transportable testing device was developed at the PTB, which enables testing at discrete frequencies between 27 MHz and 5.8 GHz. The frequencies were selected such that, on the one hand, the real disturbance sources are displayed and, on the other hand, the disturbance of radio services is avoided, so that as a result, the Federal Network Agency could grant a special permit for the restricted test operation. The frequencies of the testing device lie in the vicinity of the frequency bands of classical means of communication such as company radio and amateur radio, but also in the vicinity of the frequency ranges of modern communications systems such as GSM, DECT, UMTS, Bluetooth and WLAN.

In the test operation on site, the critical parts of the measuring system can at a distance of 1 m from the transmitting antenna be charged with the electromagnetic field successively for 1 min in each case for each single frequency and thereby the correct function of the measuring system be assessed. By means of a suitable design and a software user guidance, the presence of an expert in high frequency engineering is not necessary for the operation of the testing device on site.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
22.06.2017 | NASA/Goddard Space Flight Center

nachricht New femto-camera with quadrillion fractions of a second resolution
22.06.2017 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>