Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environment Ministry of Hesse hands over final construction permit for particle accelerator FAIR


Representatives of the Hesse Ministry for the Environment, Climate Protection, Agriculture and Consumer Protection have now handed over the eleventh and final partial construction permit pursuant to radiation protection regulations for the new particle accelerator FAIR. Thus the procedure has arrived at a final positive overall assessment on the construction of the FAIR facility in terms of safety requirements.

In addition to the general construction permit for the new particle accelerator facility FAIR, since 2011 the detailed construction plans for the individual buildings have been examined and approved by the authorities in the federal state of Hesse.

With the final partial construction permit – for the building for the proton linear accelerator (p-LINAC) – in terms of safety regulations the fundamental step has been taken for the corresponding updating of the construction plans and the commencement of the construction of the basic structure as planned in 2015.

The first partial construction approval was granted two years ago. Since then all the buildings and tunnel sections have been examined, for example the 1,100 meter ring accelerator, the experimental station for biophysics and material research, and the facility for the creation of new isotopes, the Super Fragment Separator.

The radiation protection department of GSI Helmholtzzentrum für Schwerionenforschung, which has been monitoring the safety of the GSI facility for more than 40 years already, is overseeing the approvals procedures on behalf of FAIR GmbH.

The particle accelerator facility FAIR, which is some 4,000 meters long and for the most part located underground, is being built on an area of 20 hectares. It will utilize the existing 400-meter-long GSI facility as a pre-accelerator.

3,000 scientists from more than 50 countries will conduct research at FAIR into the basic building blocks of matter and the development of the universe. To this end it is possible to produce particularly intensive precision beams of antiprotons and ions of all chemical elements at FAIR.

Dr. Markus Bernards | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>