Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Enlightened’ Atoms Stage Nano-Riot Against Uniformity

19.11.2008
Theorists say atoms in a crystal can be made to behave in an unexpected way, a way that can be exploited to create tiny computer components that emit less heat and new sensors to detect bio-hazards and medical conditions.

When atoms in a crystal are struck by laser light, their electrons, excited by the light, typically begin moving back and forth together in a regular pattern, resembling nanoscale soldiers marching in a lockstep formation.

But according to a new theory developed by Johns Hopkins researchers, under the right conditions these atoms will rebel against uniformity. Their electrons will begin moving apart and then joining together again repeatedly like lively swing partners on a dance floor.

Moreover, the researchers say, this atomic freestyle dancing can be controlled, paving the way for tiny computer components that emit less heat and new sensors to detect bio-hazards and medical conditions.

“By choosing particular atoms in the proper configuration and directing the right laser light at them, we could control the behavior of these ‘nano-dancers,’” said Alexander E. Kaplan, a professor in the Department of Electrical and Computer Engineering in Johns Hopkins’ Whiting School of Engineering. “The essential thing is, these are completely designable atomic structures.”

Kaplan and Sergei N. Volkov, a postdoctoral fellow in his lab, described this phenomenon in a paper published recently in the journal Physical Review Letters. The next step is for other researchers to conduct lab experiments in an effort to validate the theory and predictions advanced by Kaplan and Volkov.

Kaplan, an internationally renowned nonlinear optics expert who studies how matter interacts with strong light, said his and Volkov’s “nano-riot” idea runs counter to a widely accepted concept. For decades, Kaplan said, scientists have adhered to the Lorentz-Lorenz theory, which asserts that the atomic electrons in a crystal, exposed to a laser beam, will move back and forth in tandem in a uniform way under any conditions.

“But we’ve concluded that under certain circumstances, the nearest atoms will behave much differently,” he said. “Their electrons will move violently apart and come back together again, staging a sort of ‘nano-riot.’”

For this to happen, Kaplan said, several critical conditions must exist. First, the system must be very small, typically involving no more than a few hundred atoms, and the atoms must be arranged in a one-dimensional or two-dimensional configuration. The atoms must be grouped in a sufficiently close concentration; interestingly, though, this arrangement may allow more space between atoms than exists in a typical crystal. Also, the frequency of the laser driving the atoms must be closely tuned to one of the specific frequencies of the atomic electrons -- the so-called atomic resonance -- in the way that a radio receiver might be tuned to a particular station.

When these critical conditions are met, the interacting excited atomic electrons get strongly “coupled,” and their motion is affected by one another. The atomic dance partners begin to match or counter-match the motion of each other, while still being driven by the laser’s “music.”

When this occurs, the dancing atomic electrons form waves of collective motion. Kaplan calls these waves “locsitons,” based on the words “local” and “exciton,” the latter referring to a physics concept. Within the atomic systems envisioned by Kaplan and Volkov, these locsiton waves are strongly affected by the boundaries of these structures or any irregularities, such as holes. The presence of these boundaries results in size-related resonances, or highly excited motion at certain frequencies, resembling those of a violin string fixed at two end-points. In this case, the string’s end-points would be the boundaries of the group of atoms. A smooth violin string produces mostly a main tone, and nearby points of the string move in unison. But an atomic array more closely resembles a chain of connected beads, and with the right laser tuning, the neighboring beads, or atomic electrons, can oscillate counter to each other.

“Fortunately, once this atomic structure is built, the ‘dancing style’ of the atoms can be controlled by the laser tuning,” Kaplan said. “Furthermore, if the laser intensity is sufficient, we believe the atoms in this lattice will engage in so-called nonlinear behavior. That means they can be made to behave like switches in a computer. They will act like a computer’s memory or logic components, assuming the positions of either 1 or 0, depending on the initial conditions.”

Computer makers, trying to produce ever smaller metallic or semiconductor components, have run into problems related to the excessive release of heat. However, the nanoscale switch envisioned by Kaplan would be a dielectric, meaning it would involve no exchange of free electrons in the structure. Because of this, the proposed components would generate far less heat.

If their theory is confirmed, the Johns Hopkins researchers foresee other applications for these nanoscale atomic systems. The tiny lattices, they say, could be designed so that when a specific foreign bio-molecule enters a system, the atomic electron ‘dancing’ would stop. Because of this characteristic, they said, the system could be designed to trigger an alarm signal whenever a bio-hazard or perhaps a cancer cell was detected.

The research by Kaplan and Volkov was supported by a grant from the Air Force Office of Scientific Research.

Color images of the researchers available; contact Phil Sneiderman.

Related links:
Alexander Kaplan’s Web Site: http://psi.ece.jhu.edu/~kaplan/
Johns Hopkins Department of Electrical and Computer Engineering: http://w ww.ece.jhu.edu/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>