Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enigmatic "Ribbon" Of Energy Discovered by NASA Satellite Explained

06.02.2013
After three years of puzzling over a striking "ribbon" of energy and particles discovered by NASA's Interstellar Boundary Explorer (IBEX) at the edge of our solar system, scientists may be on the verge of cracking the mystery.

In a paper published Feb. 4, 2013, in the Astrophysical Journal, researchers, including lead author Nathan Schwadron of the University of New Hampshire, propose a "retention theory" that for the first time explains all the key observations of this astrophysical enigma.


A three-dimensional diagram of the retention region shown as a "life preserver" around our heliosphere bubble along with the original IBEX ribbon image. The interstellar magnetic field lines are shown running from upper left to lower right around the heliosphere, and the area where the field lines "squeeze" the heliosphere corresponds to the ribbon location. The red arrow at the front shows the direction of travel of our solar system. Image credit: Adler Planetarium/IBEX Team.

"If the theory is correct," Schwadron notes, "the ribbon can be used to tell us how we're moving through the magnetic fields of the interstellar medium and how those magnetic fields then influence our space environment."

In particular, these strong magnetic fields appear to play a critical role in shaping our heliosphere - the huge bubble that surrounds our solar system and shields us from much of harmful galactic cosmic radiation that fills the galaxy. This may have important ramifications for the history and future of radiation in space, and its impact here on Earth, as the heliosphere changes in response to changing conditions in the interstellar medium or the "space between the stars."

According to the retention theory, the ribbon exists in a special location where neutral hydrogen atoms from the solar wind move across the local galactic magnetic field. Neutral atoms are not affected by magnetic fields, but when their electrons get stripped away they become charged ions and begin to gyrate rapidly around magnetic field lines. That rapid rotation creates waves or vibrations in the magnetic field, and the charged ions then become trapped by the waves. This is the process that creates the ribbon.

Says Schwadron, an associate professor at UNH's Institute for the Study of Earth, Oceans, and Space and department of physics, "Think of the ribbon as a harbor and the solar wind particles it contains as boats. The boats can be trapped in the harbor if the ocean waves outside it are powerful enough. This is the nature of the new ribbon model. The ribbon is a region where particles, originally from the solar wind, become trapped or 'retained' due to intense waves and vibrations in the magnetic field."
The Astrophysical Journal paper is titled "Spatial Retention of Ions Producing the IBEX Ribbon" and is coauthored by Dave McComas of the Southwest Research Institute and principal investigator for the IBEX mission.

Says McComas, "This is a perfect example of the scientific process: we observe something completely new and unexpected with IBEX, develop various hypotheses to explain the observations, and then develop mathematical models to try to validate the hypotheses."

Indeed, since the discovery of the ribbon, more than a dozen competing theories seeking to explain the phenomenon have been put forth. The retention theory "checks all the boxes, agrees with all the available observations, and the mathematical modeling results look remarkably like what the ribbon actually looks like," notes Schwadron. "This substantially raises the bar for models that attempt to explain the ribbon."

IBEX was launched in October 2008 and has provided images of the invisible interactions between the solar wind and the local galactic medium. The ribbon was captured using ultra-high sensitive cameras - one of which has components designed and built at the UNH Space Science Center - that image energetic neutral atoms (instead of photons of light) to create maps of the boundary region between our solar system and the rest of our galaxy.

Although the retention theory may check all the boxes, the IBEX team is still far from claiming that the ribbon is fully explained. A major test for the retention theory will be watching how the ribbon changes in step with observed changes in the solar wind. Notes Schwadron, "If what we observe matches what the model predicts should happen to the ribbon as the solar wind changes, that will go a long way toward validating the model."

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorer space missions. Southwest Research Institute in San Antonio, Texas, leads the IBEX mission with teams of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington, D.C.

David Sims | EurekAlert!
Further information:
http://www.unh.edu
http://www.eos.unh.edu/news/indiv_news.shtml?NEWS_ID=1370

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>