Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhancing the magnetism

21.03.2011
“The nation that controls magnetism will control the universe,” famed fictional detective Dick Tracy predicted back in 1935. Probably an overstatement, but there’s little doubt the nation that leads the development of advanced magnetoelectronic or “spintronic” devices is going to have a serious leg-up on its Information Age competition. A smaller, faster and cheaper way to store and transfer information is the spintronic grand prize and a key to winning this prize is understanding and controlling a multiferroic property known as “spontaneous magnetization.”

Now, researchers with the U.S. Department of Energy (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to enhance spontaneous magnetization in special versions of the popular multiferroic material bismuth ferrite. What’s more, they can turn this magnetization “on/off” through the application of an external electric field, a critical ability for the advancement of spintronic technology.

“Taking a novel approach, we’ve created a new magnetic state in bismuth ferrite along with the ability to electrically control this magnetism at room temperature,” says Ramamoorthy Ramesh, a materials scientist with Berkeley Lab’s Materials Sciences Division, who led this research. “An enhanced magnetization arises in the rhombohedral phases of our bismuth ferrite self-assembled nanostructures. This magnetization is strain-confined between the tetragonal phases of the material and can be erased by the application of an electric field. The magnetization is restored when the polarity of the electric field is reversed.”

Ramesh, who also holds appointments with the University of California Berkeley’s Department of Materials Science and Engineering and the Department of Physics, is the corresponding author of a paper in the journal Nature Communications titled “Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics.”

Magnetoelectronic or spintronic devices store data through electron spin and its associated magnetic moment rather than the electron charge-based storage of today’s electronic devices. Spin, a quantum mechanical property arising from the magnetic moment of a spinning electron, carries a directional value of either “up” or “down” that can be used to encode data in the 0s and 1s of the binary system. In addition to the size, speed and capacity advantages over electronic devices, the data storage in spintronic devices does not disappear when the electric current stops.

Multiferroics are prime candidate materials for future spintronic devices because they can simultaneously exhibit both electric and magnetic properties. Bismuth ferrite, a multiferroic comprised of bismuth, iron and oxygen (BFO), has been thrust into the spintronic spotlight thanks in part to a surprising discovery in 2009 by Ramesh and his research group. They found that although bismuth ferrite is an insulator, running through its crystals are two-dimensional sheets called “domain walls” that conduct electricity. Ramesh and his group subsequently found that application of a large epitaxial strain (compression in the direction of a material’s crystal planes) changes the bismuth ferrite crystal structure from its natural rhombohedral phase into a tetragonal phase. Partial relaxation of the strain creates a stable nanoscale mixture of the rhombohedral and tetragonal phases.

In this new research, Ramesh and his group have deployed epitaxial strain to create bismuth ferrite films that are a mix of highly distorted rhombohedral and tetragonal phases, in which the rhombohedral phases are mechanically confined by regions of the tetragonal phases. The magnetic moments that spontaneously arise in these special films occur within the distorted rhombohedral phase rather than at the phase interfaces and are significantly stronger than the magnetic moment that occurs in conventional bismuth ferrite.

“Normal bismuth ferrite films typically show a spontaneous magnetization of 6 to 8 electromagnetic units/cubic centimeter, which is too small for applications in a real device,” says Qing (Helen) He, who was the lead author on the Nature Communications paper. “By setting our bismuth ferrite films in this special mixed phase state, we can enhance the spontaneous magnetization to approximately 30 to 40 electromagnetic units/cubic centimeter, which is large enough to be used in real devices.”

Ramesh, He and their co-authors discovered that the enhanced spontaneous magnetization in their special bismuth ferrite films can be controlled through the use of an external electric field without any noticeable current passing through the film. The ability to turn the magnetization on/off in these films opens the door to their use in spintronic devices as the on/off states can serve as the 1 and 0 states of data storage. That these on/off states can be achieved without an electric current is a significant added advantage.

“In the typical magnetic memory device, the magnetic state of the material is set by an external magnetic field that is generated from the current flowing through an electromagnet,” says He. “Current flow needs to be driven with a lot of power and at the same time generates waste heat. Therefore, using an electric field instead of a current to control the magnetization saves energy.”

The discovery that the magnetization of these special bismuth ferrite films can be controlled with an electric field was largely made possible by the use of PhotoEmission Electron Microscopy (PEEM) at Berkeley Lab’s Advanced Light Source (ALS), a DOE Office of Science national user facility for synchrotron radiation. The PEEM3 microscope at ALS beamline 11.0.1 is one of the world’s best instruments for studying ferromagnetic and antiferromagnetic nanoscale domains.

In addition to Ramesh and He, other co-authors of the paper “Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics” were Ying-Hao Chu, John Heron, Seung-Yeul Yang, Wen-I Laing, Chang-Yang Kuo, Hong-Ji Lin, Pu Yu, Chen-Wei Liang, Robert Zeches, Wei-Chen Kuo, Jenh-Yih Juang, Chien-Te Chen, Elke Arenholz and Andreas Scholl.

This research was primarily supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our Website at www.lbl.gov

Additional Information

For more information on the research of Ramamoorthy Ramesh, visit his Website at http://www.lbl.gov/msd/investigators/investigators_all/ramesh_investigator.html

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>