Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers ride 'rogue' laser waves to build better light sources

09.03.2009
New technology presented at world's largest optical communication conference produces better sources of white light

A freak wave at sea is a terrifying sight. Seven stories tall, wildly unpredictable, and incredibly destructive, such waves have been known to emerge from calm waters and swallow ships whole.

But rogue waves of light -- rare and explosive flare-ups that are mathematically similar to their oceanic counterparts -- have recently been tamed by a group of researchers at the University of California, Los Angeles (UCLA).

UCLA's Daniel Solli, Claus Ropers, and Bahram Jalali are putting rogue light waves to work in order to produce brighter, more stable white light sources, a breakthrough in optics that may pave the way for better clocks, faster cameras, and more powerful radar and communications technologies. Their findings will be presented during the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), taking place March 22-26 in San Diego.

Rogue bursts of light were first spotted a year ago during the generation of a special kind of radiation called supercontinuum (SC). SC light is created by shooting laser pulses into crystals and optical fibers. Like the incandescent bulb in a lamp, it shines with a white light that spans an extremely broad spectrum. But unlike a bulb's soft diffuse glow, SC light maintains the brightness and directionality of a laser beam. This makes it suitable for a wide variety of applications -- a fact recognized by the 2005 Nobel Prize in Physics, awarded in part to scientists who used SC light to measure atomic transitions with extraordinary accuracy.

Despite more than 40 years of research, SC light has proven to be difficult to control and prone to instability. Though rogue waves are not the cause of this instability, the UCLA researchers suspected that a better understanding of how noise in SC light triggers rogue waves could improve their control of this bright white light. Rogue waves occur randomly in SC light and are so short-lived that the team had to employ a new technique just to spot them. Although they are rare, they are more common than would be predicted by a bell curve distribution, governed instead by the same "L-shaped" statistics that describe other extreme events like volcanic eruptions and stock market crashes.

By tinkering with the initial laser pulses used to create SC light, Solli and his team discovered how to reproduce the rogue waves, harness them, and put them to work. His results, to be presented at OFC/NFOEC 2009, demonstrate that a weak burst of light, broadcast at the perfect "tickle spot," produces a rogue wave on demand. Instead of disrupting things, it stabilizes SC light, reducing fluctuations by at least 90 percent. The seed wave also decreases the amount of energy needed to produce a supercontinuum by 25 percent. The process, says Solli, is similar to boiling water. "If you heat pure water, it can boil suddenly and explosively," he says. "But normal water has nucleation sites for bubble formation that -- like our seed waves stimulate the supercontinuum -- help the water boil smoothly with less heat."

This new-and-improved white light, funded by DARPA, could help to push forward a range of technologies. Solli and Jalali are developing time-stretching devices that slow down electrical signals; such devices could be used in new optical analog-to-digital converters 1,000 times faster than current electronic versions. These converters could help to overcome the current conversion-rate bottleneck that holds back advanced radar and communication technologies. Stabilized SC light could also be used to create super-fast cameras for laboratory use or incorporated into optical clockworks.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>