Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Find a Way to Win in Laser Performance by Losing

17.10.2014

Energy loss in optical systems, such as lasers, is a chief hindrance to their performance and efficiency, and it occurs on an ongoing, frustrating basis.

To help laser systems overcome loss, operators often pump the system with an overabundance of photons, or light packets, to achieve optical gain. But now engineers at Washington University in St. Louis have shown a new way to reverse or eliminate such loss by, ironically, adding loss to a laser system to actually reap energy gains. In other words, they’ve invented a way to win by losing.


J. Zhu, B. Peng, S.K. Ozdemir, L. Yang

Loss-induced onset of lasing in coupled microresonators. In the upper image, two directly coupled whispering-gallery silica resonators are illustrated with two supermodes whose fields are equally distributed between the resonators (symmetrical distribution). A “pump” laser (yellow line) providing optical gain via Raman process cannot generate Raman laser if the provided gain does not surpass the total loss of the resonators. If the loss of the second resonator is further increased by introducing a nanostructure which absorbs the pump power, the distribution of the modes become asymmetrical. The pump field is strongly localized in the first resonator, which couples directly with the fiber taper waveguide; both the intensity of the light inside the first resonator and the sum of the intensities of the two resonators increase despite increasing loss. As a result Raman gain in the first resonator surpasses the losses and leads to onset of Raman lasing (red line): A direct manifestation of system dynamics in the vicinity of an "Exceptional point." The patterns in the circular rings are the images of fields inside the resonators.

The results were published in the Oct. 17 issue of the journal Science.

In a series of three experiments, Lan Yang, PhD, the Das Family Career Development Associate Professor in Electrical & Systems Engineering; Sahin Kaya Ozdemir, PhD, a research scientist; and Bo Peng, a graduate student in Yang’s lab at Washington University, and their collaborators, Carl M. Bender, PhD, the Konneker Distinguished Professor of Physics at Washington University; Franco Nori, PhD, at RIKEN in Japan; and Stefan Rotter, PhD, at Vienna University of Technology in Austria, showed in a first experiment that they could change the coupling between two microresonators by changing their distance and introduce on-demand loss controllably to one of them.

In a second experiment, by varying the loss, they manipulated the coupling regimes and estimated the intensity of light in the two resonators and surprisingly found an initial decrease in total intensity of the two resonators followed by an increase, and finally a rebirth of strong light intensity as the loss was increased.

“The loss added beyond a critical value increased the total light intensity and its distribution between the resonators,” Peng said.

In a third experiment, the researchers report achieving two nonlinear phenomena, the Thermal Effect and a Raman gain in silica despite increasing loss.

“Light intensity is a very important parameter in optical systems, and here we have provided a new route to increase light intensity by modulating loss in the system,” Yang said. “Instead of the standard method of adding more energy into the system, we’re offering a more energy-efficient method.”

“Too much of something can be really detrimental,” Ozdemir said. “If you pump in more energy to get more laser intensity, and it’s too strong, you can get a sudden drop in the laser performance.

“It is counterintuitive and paradoxical to see that the lasing starts and its output power becomes higher and higher when more loss is introduced, that is, less pumping is used,” Ozdemir said. “This turns the conventional textbook understanding of lasers upside down.”

Yang said that in addition to lasing improvements, their findings could lead to new schemes and techniques for controlling and reversing the effects of loss in various other physical systems, such as in photonic crystal activities, plasmonic structures and metamaterials.

The experimental system that the researchers used consists of two tiny directly coupled silica microtoroid (doughnut-shaped) resonators, each coupled to a different fiber-taper coupler that aids in guiding light from a laser diode to photodetectors; the fiber is tapered in the middle so that light can between the fibers and the resonators. Yang said the concept will work in any coupled physical system.

Loss is delivered to one of the microresonators by a tiny device, a chromium-coated silica nanotip, whose position within the evanescent field (leaked out light) of one of the resonator was controlled by a nanopositioner that operates at a minuscule 20-nanometer resolution.

“Chromium is used because it’s a strongly absorbing material at a wavelength of 1550 nanometers, and it gives a good dose of loss,” Peng said.

Another nanopositioner controls the coupling strength between the resonators by tuning their distance.

The loss-gain phenomenon occurs near a feature called the exceptional point, which has a dramatic effect on a system’s properties. The exceptional point has contributed to a number of counterintuitive activities and results in recent physics studies.

“When we steer the system through the exceptional point, the symmetric distribution of the fields between two resonators become asymmetric,” Ozdemir said. “Asymmetric distribution leads to field localization, increasing the light intensity in one of the resonators, in this case the resonator with less loss. As a result, all nonlinear processes, which depend on the intensity of light, in that subsystem become affected.”

“The beauty of this work is in how we came to provide new schemes and techniques to engineer a physical system by controlling loss,” Yang said. “Normally, loss is considered bad, but we actually take advantage of this and reverse the bad effect. We used the laser to show it.”

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 91 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 750 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Peng B, Ozdemir SK, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender, CM, Nori F, Yang L. Loss induced suppression and revival of lasing. Science, Oct. 17, 2014.

Funding for this research is provided by the Presidential Early Career Award for Scientists and Engineers (PECASE), Army Research Office, U.S. Department of Energy, RIKEN iTHES Project, MURI Center for Dynamic Magneto-Optics, Grant-in-Aid for Scientific Research, Vienna Science and Technology Fund and the Austrian Science Fund.

Contact Information

Julie Flory
314 935-5408
Julie.Flory@WUSTL.EDU

Julie Flory | newswise
Further information:
http://www.wustl.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>