Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Create Miniature Plasma Source for Thrusters

09.12.2011
Boise State University engineering researchers have developed and tested a miniature plasma source for a micro-propulsion system that could help move small satellites and enable them to maintain a position while in orbit.

The Boise State engineers have created a miniature inductively coupled plasma source that could be used for ion thrusters where the propulsive force is generated by electricity rather than combustion.

In physics and chemistry, plasma is a state of matter similar to gas where a portion of the particles are ionized. The new system is a result of research on electric propulsion in low-temperature, co-fired ceramic (LTCC) materials. The engineers designed and tested a system that provides high density plasma by using the gas argon as a propellant and injecting it into a thrust chamber to move small objects like a satellite.

“Overall, electric thrusters are more efficient in propellant usage and that allows the devices to operate for longer periods of time without the need to refuel,” said study coauthor Don Plumlee, assistant professor of mechanical and biomedical engineering. “A plasma thruster provides more thrust for the mass of propellant being ejected compared to traditional chemical thrusters and it provides more efficient performance at the small thruster sizes we are targeting.”

The miniature plasma source was created out of a material that allows the integration of additional thruster elements, including propellant delivery into a single device. The concept is based on the miniaturization of an electric thruster, using ceramic materials to integrate fluidics and electronics. The researchers then tested the system over different frequencies and argon pressures. The system performed well at frequencies from 400 MHz to 1000 MHz and a resonant frequency near 920 MHz.

“Our inductively coupled plasma source also is embedded inside the ceramic substrate, which protects it from back-bombardment of the plasma ions that could potentially erode the antenna,” said study coauthor Jim Browning, associate professor of electrical engineering and computer science. “These devices are really the first step in developing a smaller electrostatic thruster in ceramic materials.”

The design and testing of the plasma source is outlined in a paper that appears online in the journal IEEE Transactions in Plasma Science.

Learn More About Research at Boise State University
An emerging metropolitan research university of distinction, Boise State University has launched a new website – beyondtheblue.boisestate.edu – to showcase the research expertise and innovative spirit at the university. Known for its unique blue turf and nationally ranked football program, Boise State is demonstrating its creativity beyond the blue in an ongoing series of faculty podcasts where faculty experts provide insight into today’s issues, challenges and topics of interest.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>