Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Create Miniature Plasma Source for Thrusters

09.12.2011
Boise State University engineering researchers have developed and tested a miniature plasma source for a micro-propulsion system that could help move small satellites and enable them to maintain a position while in orbit.

The Boise State engineers have created a miniature inductively coupled plasma source that could be used for ion thrusters where the propulsive force is generated by electricity rather than combustion.

In physics and chemistry, plasma is a state of matter similar to gas where a portion of the particles are ionized. The new system is a result of research on electric propulsion in low-temperature, co-fired ceramic (LTCC) materials. The engineers designed and tested a system that provides high density plasma by using the gas argon as a propellant and injecting it into a thrust chamber to move small objects like a satellite.

“Overall, electric thrusters are more efficient in propellant usage and that allows the devices to operate for longer periods of time without the need to refuel,” said study coauthor Don Plumlee, assistant professor of mechanical and biomedical engineering. “A plasma thruster provides more thrust for the mass of propellant being ejected compared to traditional chemical thrusters and it provides more efficient performance at the small thruster sizes we are targeting.”

The miniature plasma source was created out of a material that allows the integration of additional thruster elements, including propellant delivery into a single device. The concept is based on the miniaturization of an electric thruster, using ceramic materials to integrate fluidics and electronics. The researchers then tested the system over different frequencies and argon pressures. The system performed well at frequencies from 400 MHz to 1000 MHz and a resonant frequency near 920 MHz.

“Our inductively coupled plasma source also is embedded inside the ceramic substrate, which protects it from back-bombardment of the plasma ions that could potentially erode the antenna,” said study coauthor Jim Browning, associate professor of electrical engineering and computer science. “These devices are really the first step in developing a smaller electrostatic thruster in ceramic materials.”

The design and testing of the plasma source is outlined in a paper that appears online in the journal IEEE Transactions in Plasma Science.

Learn More About Research at Boise State University
An emerging metropolitan research university of distinction, Boise State University has launched a new website – beyondtheblue.boisestate.edu – to showcase the research expertise and innovative spirit at the university. Known for its unique blue turf and nationally ranked football program, Boise State is demonstrating its creativity beyond the blue in an ongoing series of faculty podcasts where faculty experts provide insight into today’s issues, challenges and topics of interest.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>