Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More energy efficient transistors through quantum tunneling

27.03.2012
Researchers at the University of Notre Dame and Pennsylvania State University have announced breakthroughs in the development of tunneling field effect transistors (TFETs), a semiconductor technology that takes advantage of the quirky behavior of electrons at the quantum level.

Transistors are the building blocks of the electronic devices that power the digital world, and much of the growth in computing power over the past 40 years has been made possible by increases in the number of transistors that can be packed onto silicon chips.

But that growth, if left to current technology, may soon be coming to an end.

Many in the semiconductor field think that the industry is fast approaching the physical limits of transistor miniaturization. The major problem in modern transistors is power leakage leading to the generation of excessive heat from billions of transistors in close proximity.

The recent advances at Notre Dame and Penn State—who are partners in the Midwest Institute for Nanoelectronics Discovery (MIND)—show that TFETs are on track to solve these problems by delivering comparable performance to today's transistors, but with much greater energy efficiency.

They do this by taking advantage of the ability of electrons to "tunnel" through solids, an effect that would seem like magic at the human scale but is normal behavior at the quantum level.

"A transistor today acts much like a dam with a moveable gate" says Alan Seabaugh, professor of electrical engineering at Notre Dame and the Frank M. Freimann Director of MIND. "The rate at which water flows, the current, depends on the height of the gate."

"With tunnel transistors, we have a new kind of gate, a gate that the current can flow through instead of over. We adjust the thickness of the gate electrically to turn the current on and off."

"Electron tunneling devices have a long history of commercialization," adds Seabaugh, "You very likely have held more than a billion of these devices in a USB flash drive. The principle of quantum mechanical tunneling is already used for data storage devices."

While TFETs don't yet have the energy efficiency of current transistors, papers released in December 2011 by Penn State and March 2012 by Notre Dame demonstrate record improvements in tunnel transistor drive current, and more advances are expected in the coming year.

"Our developments are based on finding the right combination of semiconductor materials with which to build these devices," says Suman Datta, professor of electrical engineering at Penn State University.

"If we're successful, the impact will be significant in terms of low power integrated circuits. These, in turn, raise the possibility of self-powered circuits which, in conjunction with energy harvesting devices, could enable active health monitoring, ambient intelligence, and implantable medical devices."

Another benefit of tunneling transistors is that using them to replace existing technology wouldn't require a wholesale change in the semiconductor industry. Much of the existing circuit design and manufacturing infrastructure would remain the same.

"Strong university research on novel devices such as TFETs is critical for continuing the rapid pace of technology development," said Jeff Welser, director of the Nanoelectronics Research Initiative. "Much of the industry recognizes that it will take collaborations with both academia and government agencies to find and develop these new concepts."

Two other partners in the MIND center—Purdue University and The University of Texas at Dallas—have made significant contributions to the development of TFETs through the development of key modeling and analytical tools.

The Midwest Institute for Nanoelectronics Discovery (MIND) is one of four centers funded by the Semiconductor Research Corporation's Nanoelectronics Research Initiative (NRI). The goal of NRI and its university-based centers is to demonstrate novel computing devices capable of replacing the complementary metal oxide semiconductor (CMOS) transistor as a logic switch. Established in 2008, MIND is led by the University of Notre Dame and includes Pennsylvania State University, Purdue University, and University of Texas-Dallas.

Alan Seabaugh | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
22.06.2017 | NASA/Goddard Space Flight Center

nachricht New femto-camera with quadrillion fractions of a second resolution
22.06.2017 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>