Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Emulation for understanding

Controllable quantum systems that allow us to better understand complex physical processes are now within reach

Physical processes affect almost every aspect of our lives, yet physicists still grapple with understanding and modeling the behavior of many such processes—particularly complex quantum physical processes, including certain superconducting effects.

To circumvent the limitations of conventional computers in tackling these problems, physicists have proposed using well-understood quantum systems called ‘quantum simulators’ (or ‘quantum emulators’) to emulate similar, but otherwise poorly understood, quantum systems.

In a review of the different approaches taken in developing these simulators, Iulia Buluta and Franco Nori from the RIKEN Advanced Science Institute, Wako (and the University of Michigan, USA), have concluded that the first practical applications may soon be a reality1.

“Quantum emulators could be employed in fields such as atomic physics or condensed-matter physics,” explains Nori. However, he says, the detailed study of known physical processes is just one advantage: these controllable quantum emulators would also allow the exploration of novel physical processes that are typically hard to study.

Among the various physical systems that could be used to build a quantum simulator, one possibility is the use of regular arrays of atoms or ions that are held in place by laser fields. According to Buluta and Nori, the interactions between these atoms provide a good model for emulating the interaction between other particles in complex systems. To model electrical conductivity, for example, this type of quantum simulator can be used to study the transition from the insulating state to the conducting state, where the atoms switch from being fixed to being free to move.

Buluta and Nori also point out that electronic devices fabricated on a computer chip could be used as a controllable quantum system. In this system, small circuits made from superconducting wires possess quantum physical properties that could be used to model atomic physics problems.

These quantum systems have been demonstrated experimentally (Fig. 1); however, challenges remain until more advanced and versatile quantum simulators can be built. Synchronizing the operation of a large number of components, for example, has not yet been achieved, Buluta notes. From a theoretical viewpoint, she says that much also needs to be learned about meaningfully programming quantum simulators.

Nevertheless, Nori believes that, in contrast to the situation 25 years ago when Richard Feynman first proposed quantum simulators, the experimental demonstrations of the basic components for quantum computers completed to date suggest an optimistic outlook. “The necessary level of control of quantum systems is now within reach,” he says.

The corresponding author for this highlight is based at the Digital Materials Laboratory, RIKEN Advanced Science Institute

Journal information

Buluta, I. & Nori. F. Quantum simulators. Science 326, 108–111 (2009).

Saeko Okada | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>