Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Emmy Noether Junior Research Group examines role played by W bosons in the structure of matter

Matthias Schott is to form an independent work group at Mainz University to precisely measure the mass of the W boson

The particle physicist Dr. Matthias Schott will establish a junior research group at Johannes Gutenberg University Mainz (JGU) that will make high precision measurements of the W boson particle, one of the fundamental building blocks of matter.

This new research group will be receiving financial support from the German Research Foundation (DFG) over the coming years. The team is part of the Experimental Particle and Astroparticle Physics (ETAP) work group at JGU and thus actively involved in the university's Cluster of Excellence Precision Physics, Fundamental Interaction and Structure of Matter (PRISMA).

Its investigations will be conducted using data taken by the ATLAS Experiment at CERN's Large Hadron Collider (LHC) in Geneva. "The precision measurements will help us to better understand the structure of matter," is how Matthias Schott explains his expectations. The project has particular significance in view of the recently announced discovery of the Higgs boson at CERN.

The Standard Model has been the most successful theory in the history of particle physics, describing the fundamental constituents of matter and their interactions. Despite its huge success in the past decades, several crucial questions remain open. Particle physicists still intensely seek to understand how fundamental particles acquire their mass, or in other words, what is the role of the Higgs mechanism in the electroweak symmetry breaking. "The precise mass determination of the three fundamental particles – the W boson, the top quark, and the Higgs boson discovered at the beginning of June 2012 – can provide us with a definite answer," claims Schott.

W bosons are electrically charged elementary particles that mediate the weak interaction, which is for example responsible for the decay of the neutron. As their mass is roughly 80 times that of a proton, W bosons are relatively heavy. Although they can be generated in particle accelerators like the LHC, they decay very rapidly. The goal of the new junior research group is to conduct the precision measurement of the mass of the W boson with a target precision of 0.01%, implementing several innovative approaches on data-analyses and large-scale computing. This is one of the most difficult tasks in modern particle physics due to the large number of experimental and theoretical aspects that need to be taken into account.

"We are looking forward to our collaboration with Dr. Martin Schott, whose research project perfectly complements our current work in particle physics," explains Professor Dr. Volker Büscher of the Experimental Particle and Astroparticle Physics (ETAP) group at Mainz University. Approximately 50 physicists from JGU are participating in research at CERN, in particular in the ATLAS experiment, one of two major experiments tasked with searching for the Higgs particle and providing definitive proof of its existence.

It is the intention of the German Research Foundation to use its Emmy Noether Program as a means of helping young scientists attain independence when it comes to research by enabling them to head up junior research groups and thus gain the qualifications needed to teach at university. Over recent years, Matthias Schott has been working as a researcher at CERN on a project involving the generation of low energy gauge bosons using the LHC. He will start forming the work group in the fall of 2012 in Mainz.

Petra Giegerich | idw
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>