Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Emmy Noether Junior Research Group examines role played by W bosons in the structure of matter

31.08.2012
Matthias Schott is to form an independent work group at Mainz University to precisely measure the mass of the W boson

The particle physicist Dr. Matthias Schott will establish a junior research group at Johannes Gutenberg University Mainz (JGU) that will make high precision measurements of the W boson particle, one of the fundamental building blocks of matter.

This new research group will be receiving financial support from the German Research Foundation (DFG) over the coming years. The team is part of the Experimental Particle and Astroparticle Physics (ETAP) work group at JGU and thus actively involved in the university's Cluster of Excellence Precision Physics, Fundamental Interaction and Structure of Matter (PRISMA).

Its investigations will be conducted using data taken by the ATLAS Experiment at CERN's Large Hadron Collider (LHC) in Geneva. "The precision measurements will help us to better understand the structure of matter," is how Matthias Schott explains his expectations. The project has particular significance in view of the recently announced discovery of the Higgs boson at CERN.

The Standard Model has been the most successful theory in the history of particle physics, describing the fundamental constituents of matter and their interactions. Despite its huge success in the past decades, several crucial questions remain open. Particle physicists still intensely seek to understand how fundamental particles acquire their mass, or in other words, what is the role of the Higgs mechanism in the electroweak symmetry breaking. "The precise mass determination of the three fundamental particles – the W boson, the top quark, and the Higgs boson discovered at the beginning of June 2012 – can provide us with a definite answer," claims Schott.

W bosons are electrically charged elementary particles that mediate the weak interaction, which is for example responsible for the decay of the neutron. As their mass is roughly 80 times that of a proton, W bosons are relatively heavy. Although they can be generated in particle accelerators like the LHC, they decay very rapidly. The goal of the new junior research group is to conduct the precision measurement of the mass of the W boson with a target precision of 0.01%, implementing several innovative approaches on data-analyses and large-scale computing. This is one of the most difficult tasks in modern particle physics due to the large number of experimental and theoretical aspects that need to be taken into account.

"We are looking forward to our collaboration with Dr. Martin Schott, whose research project perfectly complements our current work in particle physics," explains Professor Dr. Volker Büscher of the Experimental Particle and Astroparticle Physics (ETAP) group at Mainz University. Approximately 50 physicists from JGU are participating in research at CERN, in particular in the ATLAS experiment, one of two major experiments tasked with searching for the Higgs particle and providing definitive proof of its existence.

It is the intention of the German Research Foundation to use its Emmy Noether Program as a means of helping young scientists attain independence when it comes to research by enabling them to head up junior research groups and thus gain the qualifications needed to teach at university. Over recent years, Matthias Schott has been working as a researcher at CERN on a project involving the generation of low energy gauge bosons using the LHC. He will start forming the work group in the fall of 2012 in Mainz.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15665_ENG_HTML.php
http://www.prisma.uni-mainz.de/

More articles from Physics and Astronomy:

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

nachricht Supersensitive through quantum entanglement
28.06.2017 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>