Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Emmy Noether Junior Research Group examines role played by W bosons in the structure of matter

31.08.2012
Matthias Schott is to form an independent work group at Mainz University to precisely measure the mass of the W boson

The particle physicist Dr. Matthias Schott will establish a junior research group at Johannes Gutenberg University Mainz (JGU) that will make high precision measurements of the W boson particle, one of the fundamental building blocks of matter.

This new research group will be receiving financial support from the German Research Foundation (DFG) over the coming years. The team is part of the Experimental Particle and Astroparticle Physics (ETAP) work group at JGU and thus actively involved in the university's Cluster of Excellence Precision Physics, Fundamental Interaction and Structure of Matter (PRISMA).

Its investigations will be conducted using data taken by the ATLAS Experiment at CERN's Large Hadron Collider (LHC) in Geneva. "The precision measurements will help us to better understand the structure of matter," is how Matthias Schott explains his expectations. The project has particular significance in view of the recently announced discovery of the Higgs boson at CERN.

The Standard Model has been the most successful theory in the history of particle physics, describing the fundamental constituents of matter and their interactions. Despite its huge success in the past decades, several crucial questions remain open. Particle physicists still intensely seek to understand how fundamental particles acquire their mass, or in other words, what is the role of the Higgs mechanism in the electroweak symmetry breaking. "The precise mass determination of the three fundamental particles – the W boson, the top quark, and the Higgs boson discovered at the beginning of June 2012 – can provide us with a definite answer," claims Schott.

W bosons are electrically charged elementary particles that mediate the weak interaction, which is for example responsible for the decay of the neutron. As their mass is roughly 80 times that of a proton, W bosons are relatively heavy. Although they can be generated in particle accelerators like the LHC, they decay very rapidly. The goal of the new junior research group is to conduct the precision measurement of the mass of the W boson with a target precision of 0.01%, implementing several innovative approaches on data-analyses and large-scale computing. This is one of the most difficult tasks in modern particle physics due to the large number of experimental and theoretical aspects that need to be taken into account.

"We are looking forward to our collaboration with Dr. Martin Schott, whose research project perfectly complements our current work in particle physics," explains Professor Dr. Volker Büscher of the Experimental Particle and Astroparticle Physics (ETAP) group at Mainz University. Approximately 50 physicists from JGU are participating in research at CERN, in particular in the ATLAS experiment, one of two major experiments tasked with searching for the Higgs particle and providing definitive proof of its existence.

It is the intention of the German Research Foundation to use its Emmy Noether Program as a means of helping young scientists attain independence when it comes to research by enabling them to head up junior research groups and thus gain the qualifications needed to teach at university. Over recent years, Matthias Schott has been working as a researcher at CERN on a project involving the generation of low energy gauge bosons using the LHC. He will start forming the work group in the fall of 2012 in Mainz.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15665_ENG_HTML.php
http://www.prisma.uni-mainz.de/

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>