Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Emmy Noether Junior Research Group examines role played by W bosons in the structure of matter

31.08.2012
Matthias Schott is to form an independent work group at Mainz University to precisely measure the mass of the W boson

The particle physicist Dr. Matthias Schott will establish a junior research group at Johannes Gutenberg University Mainz (JGU) that will make high precision measurements of the W boson particle, one of the fundamental building blocks of matter.

This new research group will be receiving financial support from the German Research Foundation (DFG) over the coming years. The team is part of the Experimental Particle and Astroparticle Physics (ETAP) work group at JGU and thus actively involved in the university's Cluster of Excellence Precision Physics, Fundamental Interaction and Structure of Matter (PRISMA).

Its investigations will be conducted using data taken by the ATLAS Experiment at CERN's Large Hadron Collider (LHC) in Geneva. "The precision measurements will help us to better understand the structure of matter," is how Matthias Schott explains his expectations. The project has particular significance in view of the recently announced discovery of the Higgs boson at CERN.

The Standard Model has been the most successful theory in the history of particle physics, describing the fundamental constituents of matter and their interactions. Despite its huge success in the past decades, several crucial questions remain open. Particle physicists still intensely seek to understand how fundamental particles acquire their mass, or in other words, what is the role of the Higgs mechanism in the electroweak symmetry breaking. "The precise mass determination of the three fundamental particles – the W boson, the top quark, and the Higgs boson discovered at the beginning of June 2012 – can provide us with a definite answer," claims Schott.

W bosons are electrically charged elementary particles that mediate the weak interaction, which is for example responsible for the decay of the neutron. As their mass is roughly 80 times that of a proton, W bosons are relatively heavy. Although they can be generated in particle accelerators like the LHC, they decay very rapidly. The goal of the new junior research group is to conduct the precision measurement of the mass of the W boson with a target precision of 0.01%, implementing several innovative approaches on data-analyses and large-scale computing. This is one of the most difficult tasks in modern particle physics due to the large number of experimental and theoretical aspects that need to be taken into account.

"We are looking forward to our collaboration with Dr. Martin Schott, whose research project perfectly complements our current work in particle physics," explains Professor Dr. Volker Büscher of the Experimental Particle and Astroparticle Physics (ETAP) group at Mainz University. Approximately 50 physicists from JGU are participating in research at CERN, in particular in the ATLAS experiment, one of two major experiments tasked with searching for the Higgs particle and providing definitive proof of its existence.

It is the intention of the German Research Foundation to use its Emmy Noether Program as a means of helping young scientists attain independence when it comes to research by enabling them to head up junior research groups and thus gain the qualifications needed to teach at university. Over recent years, Matthias Schott has been working as a researcher at CERN on a project involving the generation of low energy gauge bosons using the LHC. He will start forming the work group in the fall of 2012 in Mainz.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15665_ENG_HTML.php
http://www.prisma.uni-mainz.de/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>